1. 复杂度分析是整个算法学习的精髓,只要掌握了它,数据结构和算法的内容基本上就掌握了一半
2. 我们都知道,数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。那如何来衡量你编写的算法代码的执行效率呢?这里就要用到我们今天要讲的内容:时间、空间复杂度分析。
3. 为什么需要复杂度分析?
你可能会有些疑惑,我把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。为什么还要做时间、空间复杂度分析呢?这种分析方法能比我实实在在跑一遍得到的数据更准确吗?(事后统计法-方法是正确的但是有很大的局限性)
(1)测试结果非常依赖测试环境
(2)测试结果受数据规模的影响很大
所以,我们需要一个不用具体的测试数据来测试,就可以粗略地估计算法的执行效率的方法---时间、空间复杂度分析方法
一、大 O 复杂度表示法
总结出规律:所有代码的执行时间 T(n) 与每行代码的执行次数 n 成正比
得到公式:
我来具体解释一下这个公式。其中,T(n) 我们已经讲过了,它表示代码执行的时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。
所以,第一个例子中的 T(n) = O(2n+2),第二个例子中的 T(n) = O()。这就是大 O 时间复杂度表示法。大 O 时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。
二、时间复杂度分析
时间复杂度的全称是:渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系
1. 只关注循环执行次数最多的一段代码
2. 加法法则:总复杂度等于量级最大的那段代码的复杂度
3. 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
几种常见时间复杂度实例分析
对于刚罗列的复杂度量级,我们可以粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O() 和 O(n!)。
我们把时间复杂度为非多项式量级的算法问题叫作 NP(Non-Deterministic Polynomial,非确定多项式)问题。
当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。因此,关于 NP 时间复杂度我就不展开讲了。
我们主要来看几种常见的多项式时间复杂度
三、空间复杂度分析
空间复杂度全程是:渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系
我们常见的空间复杂度就是 O(1)、O(n)、O() ,像 O(logn)、O(nlogn) 这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,掌握刚我说的这些内容已经足够了。
复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O() 。等你学完整个专栏之后,你就会发现几乎所有的数据结构和算法的复杂度都跑不出这几个。