在单细胞测序技术尚未普及之前,为了研究真实的细胞通讯是怎样的,出现了很多方法,诸如同位素标记、免疫荧光、BioID等追踪信号和显示信号互作的技术。但传统的技术面临的壁垒就是检测通量低,耗时耗力。转录组、蛋白组等高通量方法因为混合的数据模式也并未对细胞通讯研究起到良好的推进作用。
而在单细胞转录组测序出现后,单次完成成千上万个细胞级的测序成为可能;和转录组学对于基因的研究类似,高通量测序使得研究基因与基因的互作成为了可能。因此,在高细胞通量、高基因通量和高分辨率的基础上,关于细胞通讯的研究也迎来了新的篇章。
在人体中,细胞通讯遍布各处,构成了复杂的调控网络。这些信号交互方式主要有邻接型和扩散型的信号传递方式。
邻接型的传递包含我们所熟知的神经信号传递和抗原呈递。这种信号传递方式的特点是信号传递局限在两个存在典型关联关系的细胞之间。例如膜蛋白的配体-受体直接结合将信息从一个细胞传递到另一个细胞。
扩散型的信号传递方式则是以分泌蛋白为主,分泌蛋白经过细胞基质或体液扩散至其他细胞完成细胞通讯,内分泌、旁分泌和自分泌都是典型的扩散型细胞通讯手段。
此外,因为细胞内级联反应的存在,往往只需要一个分子的信号分子即可完成细胞通讯。这种微量而复杂的网络体系无疑为细胞通讯研究造成了很大的阻碍。而单细胞转录组测序保证了数据是单个细胞的分辨率,同时具备对低丰度基因的检出能力,这为细胞通讯的研究提供了一个良好的基础。
美国加利福尼亚大学的研究人员合作在《Nature Reviews Genetics》上发表了一篇名为“Decipheringcell–cell interactions and communication from gene expression”的综述文章。文中概述了基于RNA的细胞间的相互作用分析的应用,详细介绍了细胞-细胞通讯的数据库、数学模型和计算工具的特点及优缺点,探讨了验证推测的细胞-细胞通讯的方法的机制,讨论细胞间的相互作用分析的挑战和未来的方向。
参考
//www.greatytc.com/p/c80e13df857d
https://www.nature.com/articles/s41576-020-00292-x