【Transformer理解】

Transformer是一个利用注意力机制来提高模型训练速度的模型。关于注意力机制可以参看这篇文章,trasnformer可以说是完全基于自注意力机制的一个深度学习模型,因为它适用于并行化计算,和它本身模型的复杂程度导致它在精度和性能上都要高于之前流行的RNN循环神经网络。

主要有两部分组成:Encoder 和 Decoder


当我输入一个文本的时候,该文本数据会先经过一个叫Encoders的模块,对该文本进行编码,然后将编码后的数据再传入一个叫Decoders的模块进行解码,解码后就得到了翻译后的文本,对应的我们称Encoders为编码器,Decoders为解码器。

上图中的Decoders后边加了个s,那就代表有多个编码器了,这个编码模块里边,有很多小的编码器,一般情况下,Encoders里边有6个小编码器,同样的,Decoders里边有6个小解码器。


在编码部分,每一个的小编码器的输入是前一个小编码器的输出,而每一个小解码器的输入不光是它的前一个解码器的输出,还包括了整个编码部分的输出。

一个encoder,是一个自注意力机制加上一个前馈神经网络。


【self-attention】

1、首先,self-attention的输入就是词向量,即整个模型的最初的输入是词向量的形式。那自注意力机制,就是自己和自己计算一遍注意力,即对每一个输入的词向量,构建self-attention的输入。在这里,transformer首先将词向量乘上三个矩阵,得到三个新的向量,之所以乘上三个矩阵参数而不是直接用原本的词向量是因为这样增加更多的参数,提高模型效果。对于输入X1(机器),乘上三个矩阵后分别得到Q1,K1,V1,同样的,对于输入X2(学习),也乘上三个不同的矩阵得到Q2,K2,V2。


2、接下来计算注意力得分了,通过计算Q与各个单词的K向量的点积得到的。以X1为例,分别将Q1和K1、K2进行点积运算,假设分别得到得分112和96。

3、将得分分别除以一个特定数值8(K向量的维度的平方根,通常K向量的维度是64),让梯度更加稳定,则得到结果如下:


4、将上述结果进行softmax运算得到,softmax主要将分数标准化,使他们都是正数并且加起来等于1。


5、将V向量乘上softmax的结果,为了保持想要关注的单词的值不变,而掩盖掉那些不相关的单词(例如将他们乘上很小的数字)


6、将带权重的各个V向量加起来,至此,产生在这个位置上(第一个单词)的self-attention层的输出,其余位置的self-attention输出也是同样的计算方式。


将上述的过程总结为一个公式就可以用下图表示:


为了进一步细化自注意力机制层,增加了“多头注意力机制”的概念,这从两个方面提高了自注意力层的性能。

第一个方面,他扩展了模型关注不同位置的能力,这对翻译一下句子特别有用,因为我们想知道“it”是指代的哪个单词。


第二个方面,他给了自注意力层多个“表示子空间”。对于多头自注意力机制,我们不止有一组Q/K/V权重矩阵,而是有多组(论文中使用8组),所以每个编码器/解码器使用8个“头”(可以理解为8个互不干扰自的注意力机制运算),每一组的Q/K/V都不相同。然后,得到8个不同的权重矩阵Z,每个权重矩阵被用来将输入向量投射到不同的表示子空间。

经过多头注意力机制后,就会得到多个权重矩阵Z,我们将多个Z进行拼接就得到了self-attention层的输出:


上述我们经过了self-attention层,我们得到了self-attention的输出,self-attention的输出即是前馈神经网络层的输入,然后前馈神经网络的输入只需要一个矩阵就可以了,不需要八个矩阵,所以我们需要把这8个矩阵压缩成一个,我们怎么做呢?只需要把这些矩阵拼接起来然后用一个额外的权重矩阵与之相乘即可。


最终的Z就作为前馈神经网络的输入。

接下来就进入了小编码器里边的前馈神经网模块了,关于前馈神经网络,网上已经有很多资料,在这里就不做过多讲解了,只需要知道,前馈神经网络的输入是self-attention的输出,即上图的Z,是一个矩阵,矩阵的维度是(序列长度×D词向量),之后前馈神经网络的输出也是同样的维度。

以上就是一个小编码器的内部构造了,一个大的编码部分就是将这个过程重复了6次,最终得到整个编码部分的输出。

然后再transformer中使用了6个encoder,为了解决梯度消失的问题,在Encoders和Decoder中都是用了残差神经网络的结构,即每一个前馈神经网络的输入不光包含上述self-attention的输出Z,还包含最原始的输入。

上述说到的encoder是对输入(机器学习)进行编码,使用的是自注意力机制+前馈神经网络的结构,同样的,在decoder中使用的也是同样的结构。也是首先对输出(machine learning)计算自注意力得分,不同的地方在于,进行过自注意力机制后,将self-attention的输出再与Decoders模块的输出计算一遍注意力机制得分,之后,再进入前馈神经网络模块。

上述说到的encoder是对输入(机器学习)进行编码,使用的是自注意力机制+前馈神经网络的结构,同样的,在decoder中使用的也是同样的结构。也是首先对输出(machine learning)计算自注意力得分,不同的地方在于,进行过自注意力机制后,将self-attention的输出再与Decoders模块的输出计算一遍注意力机制得分,之后,再进入前馈神经网络模块。

【参考】十分钟理解Transformer - 知乎

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,639评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,277评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,221评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,474评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,570评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,816评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,957评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,718评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,176评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,511评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,646评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,322评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,934评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,755评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,987评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,358评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,514评论 2 348

推荐阅读更多精彩内容