神经网络的局限与发展

正文

私以为,深度学习是基于多层神经网络结构的一种机器学习技术。即便深度学习已经广泛地应用于各个领域,也产生了无人驾驶、步态识别、人脸识别等重要应用,但是其短板也是致命的。比如前不久在美国发生的一起 Tesla 无人驾驶车撞上一台白色货车的严重事故,导致无人驾驶车上的乘客死亡。事后经调查发现事故的原因是当时车载的深度学习模型认为前方的白色货车是公路(因为货车通体白色)所以无人驾驶车没有减速就直接撞了上去。

显然,在开放环境下,深度学习技术还不够成熟。一方面原因是传统深度学习模型没有基于自然科学常识。

文章[1]介绍到日前 Bengio 团队提出了一种新型神经网络,将神经网络的输入变量从传统的二维矩阵拓展为图谱。图谱是一种去除了两条限制的矩阵[2]。笔者认为将深度学习的输入数据类型,从“有信息损耗的一维向量”向“无信息损耗的复杂数据类型”演进,是未来人工智能领域的研究趋势。

笔者也思考过类似的问题,为什么深度学习浪潮兴起于图像领域?我认为是这样的原因:图像的表示方法是矩阵,矩阵与一维向量是“近亲”,神经网络的输入是固定纬度的一维向量,根据“没有免费午餐定理”得出结论——图像数据特别适合于神经网络模型,所以深度学习能在图像领域大展拳脚。

笔者与学强师兄探讨过这样的问题,目前神经网络的模型更适合图像领域,那么对于自然语言处理领域,我们能否改进神经网络的底层输入是一维向量的现状,从而提出更适合自然语言处理的新型神经网络模型?

综上所述,传统的深度学习模型存在如下几个缺陷:

  1. 没有结合常识,或者说模型不基于知识;
  2. 一维向量的输入模型不适合自然语言处理领域应用。

参考文献

  1. 【一文读懂Bengio研究组最新论文】图谱注意力网络GAT,以图谱做输入做深度学习. 新智源. 邓侃
  2. Graph Attention Networks, https://arxiv.org/pdf/1710.10903.pdf
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,639评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,277评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,221评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,474评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,570评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,816评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,957评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,718评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,176评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,511评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,646评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,322评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,934评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,755评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,987评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,358评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,514评论 2 348

推荐阅读更多精彩内容