1、定理(Theorem)
1.1 定义:
Theorem(定理)----a mathematical statement that is proved using rigorous mathematical reasoning. In a mathematical paper, the term theorem is often reserved for the most important results.
主观认识:一个具有 结论性 的、用 数学陈述 的结果,它需要 严格的数学证明。
//LaTeX 头部添加
\newtheorem{theorem}{Theorem}[section]
\begin{theorem}
***//定理内容
\label{thm-1}
\end{theorem}
证明:
\begin{proof}
***//证明过程
\end{proof}
2、引理(Lemma)
Lemma(引理)----a minor result whose sole purpose is to help in proving a theorem. It is a stepping stone on the path to proving a theorem. Very occasionally lemmas can take on a life of their own (Zorn's lemma, Urysohn's lemma, Burnside's lemma,Sperner's lemma).
主观认识:引理是为了 证明定理 而存在的一个 中间步骤。
//LaTeX 头部添加
\newtheorem{lemma}{Lemma}[section]
\begin{lemma}
***//引理内容
\label{lem-1}
\end{lemma}
3、推论(Corollary)
Corollary(推论)-----a result in which the (usually short) proof relies heavily on a given theorem (we often say that \this is a corollary of Theorem A").
主观认识:推论是由 定理 经过 简短推导 而来的结果。
//LaTeX 头部添加
\newtheorem{corollary}{Corollary}[section]
\begin{corollary}
***//推论内容
\label{cor-1}
\end{corollary}
4、结论:三者的区别
主观结论
推论(Corollary)是由定理(Theorem)推导出来的,定理(Theorem)是由引理(Lemma)推导出来的。总之:引理(Lemma) => 定理(Theorem)=> 推论(Corollary)
参考:
https://blog.csdn.net/cloudeagle_bupt/article/details/46522675
https://blog.csdn.net/miracle_fans/article/details/78255650