吴恩达机器学习笔记(2)

一.逻辑回归

1.什么是逻辑回归?

逻辑回归是一种预测变量y为离散值0或1情况下的分类问题,在逻辑回归中,假设函数0\leq h_\theta(x)\leq1

2.模型描述

\begin{cases} 假设函数(hypothesis):h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{-\theta^Tx}}.\\ 参数(parameters):\theta_0,\theta_1,...,\theta_n\\ 损失函数(cost function):J(\theta)=-\frac{1}{m}[\sum_{i=1}^{m}y^{(i)}logh_\theta(x^{(i)})+(1-y^{(i)})log(1-h_\theta(x^{(i)})]\\ 目标(goal):min_{\theta} J(\theta) \end{cases}在假设函数中,g(z)=\frac{1}{1+e^{-z}}z为实数,g(z)为Sigmoid函数,也叫Logistic函数。
模型解释:h_\theta(x)=p(y=1|x;\theta),即就是对一个输入xy=1的概率估计。
损失函数的理解:所谓最大似然估计,就是我们想知道哪套参数组合对应的曲线最可能拟合我们观测到的数据,也就是该套参数拟合出观测数据的概率最大,而损失函数的要求是预测结果与真实结果越相近,函数值越小,也就是参数越能更好的拟合数据,损失函数的值越小,所以损失函数即就是最大似然函数的相反数。具体损失函数的推导可以参考链接

3.决策边界

已知h_\theta(x)表示的是对于一个输入xy=1的概率估计,则当h_\theta(x)\geq0.5时,y=1的可能性更大;当h_\theta(x)<0.5时,y=0的可能性更大。

逻辑回归假设函数图像

如上图所示,z\geq0时,g(z)\geq0.5z<0时,g(z)<0.5。即h_\theta(x)=g(\theta^Tx)\theta^Tx\geq0时,h_\theta(x)\geq0.5,则y=1;\theta^Tx<0时,h_\theta(x)<0.5,则y=0
我们把\theta^Tx=0叫做决策边界,它是假设函数的属性,决定于参数\theta,有明确的\theta,即可确定决策边界,不需要绘制训练集来确定边界。

4.逻辑回归的梯度下降法

更新公式:\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta)=\theta_j-\alpha\frac{1}{m}\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}}
具体推导过程如下:

更新公式推导

5.高级优化

除梯度下降法外,还有一些比梯度下降更快的高级优化算法,比如共轭梯度法、BFGS、L-BFGS等,这些方法不需要手动选择学习率,并且收敛速度较快。具体算法流程在此不具体展开,可自行学习。

6.多元分类

当预测变量y不只两类时,例如:y=1,y=2,y=3,可将其分成三个独立的二分类问题,创建三个伪训练集,拟合出三个分类器h_\theta^{(i)}(x)=P(y=i|x;\theta),(i=1,2,3),然后给一个新的输入值x,则其应属于max_ih_\theta^{(i)}(x)的第i类。

二.正则化

1.过拟合问题

什么是过拟合问题?
算法具有“高方差”。如果拟合一个高阶多项式,假设函数能拟合几乎所有数据,无法泛化到新的样本中,则称该模型过拟合。(泛化:一个假设模型应用到新样本的能力)
过拟合发生时,怎样解决?
(1)尽量减少选取变量的数量:人工检查变量清单,确定哪些变量保留,哪些变量舍弃;算法自动选择哪些变量保留,哪些变量舍弃。缺点是会丢失一部分信息。
(2)正则化:保留全部特征变量,但减少量级或参数\theta_j的大小。

2.正则化损失函数

正则化损失函数是给原本的损失函数加一个惩罚项,相当于简化模型,使参数尽量小。

3.线性回归的正则化

损失函数:J(\theta)=\frac{1}{2m}[\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})^2}+\lambda\sum_{j=1}^{n}{\theta_j^2}]
其中\lambda叫做正则化参数,它的作用是更好地拟合数据和保持参数尽量小。
梯度下降更新公式:\theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})x_0^{(i)}}
\theta_j:=\theta_j(1-\alpha\frac{\lambda}{m})-\alpha\frac{1}{m}\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}}(j=1,2,...,n)
正规方程:如果\lambda>0,则\theta=(X^TX+\lambda\left[ \begin{matrix} 0 & 0 & 0 & ... & 0 \\ 0 & 1 & 0 & ... & 0 \\ 0 & 0 & 1 & ... & 0 \\ ... & ... & ... & ... & ...\\ 0 & 0 & 0 & ... & 1 \end{matrix} \right])^{-1}X^Ty,该方程可以解决X^TX不可逆的问题。

4.逻辑回归的正则化

损失函数:J(\theta)=-\frac{1}{m}[\sum_{i=1}^{m}y^{(i)}logh_\theta(x^{(i)})+(1-y^{(i)})log(1-h_\theta(x^{(i)})]+\frac{\lambda}{2m}\sum_{j=1}^{n}{\theta_j^2}
梯度下降更新公式:\theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})x_0^{(i)}}
\theta_j:=\theta_j(1-\alpha\frac{\lambda}{m})-\alpha\frac{1}{m}\sum_{i=1}^{m}{(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}}(j=1,2,...,n)

三.总结

这两周学习了吴恩达机器学习的逻辑回归和正则化部分的内容,整体比较简单,主要理解了一下逻辑回归的损失函数以及梯度下降法更新公式的推导。感觉把统计和机器学习结合起来,更容易理解学习的内容。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,776评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,527评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,361评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,430评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,511评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,544评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,561评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,315评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,763评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,070评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,235评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,911评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,554评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,173评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,424评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,106评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,103评论 2 352

推荐阅读更多精彩内容

  • 今天感恩节哎,感谢一直在我身边的亲朋好友。感恩相遇!感恩不离不弃。 中午开了第一次的党会,身份的转变要...
    迷月闪星情阅读 10,561评论 0 11
  • 彩排完,天已黑
    刘凯书法阅读 4,205评论 1 3
  • 表情是什么,我认为表情就是表现出来的情绪。表情可以传达很多信息。高兴了当然就笑了,难过就哭了。两者是相互影响密不可...
    Persistenc_6aea阅读 124,740评论 2 7