该如何设计数仓的汇总层(DWS)

关于数据仓库的分层,似乎大家都有一个共同的认识。但涉及到每一层该如何去建模,可能每个人都有自己的理解。数据建模,毫无疑问是数仓建设的重中之重,然后,在实际的开发过程中,会把大量的时间都投入到了需求开发,往往会忽略数据建模(尤其是DWS层的建模),长此以往,数据模型变的越来越杂乱,指标口径无法统一,造成的结果就是:虽然表很多,但是却很难取数。本文主要介绍DWS层建模的基本方法论,希望对你有所帮助。

数仓为什么要分层

合理的数据仓库分层一方面能够降低耦合性,提高重用性,可读性可维护性,另一方面也能提高运算的效率,影响到数据需求迭代的速度,近而影响到产品决策的及时性。建立数据分层可以提炼公共层,避免烟囱式开发,可见一个合适且合理的数仓分层是极其重要。

通用分层设计思路

  • ODS:操作型数据(Operational Data Store),指结构与源系统基本保持一致的增量或者全量数据。作为DW数据的一个数据准备区,同时又承担基础数据记录历史变化,之所以保留原始数据和线上原始数据保持一致,方便后期数据核对需要。
  • CDM:通用数据模型,又称为数据中间层(Common Data Model),包含DWD、DWS、DIM层。
  • DWD:数据仓库明细层数据(Data Warehouse Detail)。对ODS层数据进行清洗转化,以业务过程作为建模驱动,基于每个具体的业务过程特点,构建最细粒度的明细事实表。可以结合企业的数据使用特点,基于维度建模思想,将明细事实表的某些重要属性字段做适当冗余,也即宽表化处理,构建明细宽表。
  • DWS:数据仓库汇总层数据(Data Warehouse Summary),基于指标需求,构建初步汇总事实表,一般是宽表。基于上层的应用和产品的指标需求,构建公共粒度的汇总指标表。以宽表化手段物理化模型,构建命名规范、口径一致的统计指标,为上层提供公共指标。
  • DIM:建立一致数据分析维表,可以降低数据计算口径不统一的风险,同时可以方便进行交叉探查。以维度作为建模驱动,基于每个维度的业务含义,通过添加维度属性、关联维度等定义计算逻辑,完成属性定义的过程并建立一致的数据分析维表。
  • ADS:面向应用的数据服务层(Application Data Service)。整合汇总成分析某一个主题域的服务数据,面向应用逻辑的数据加工。该层主要存放数据产品个性化的统计指标数据,这一层的数据直接对接数据的消费者,是产品、运营等角色可以直接感知理解的一层,大多数这一层的表都可以直接在BI上通过图表的形式直接透出。

没有DWS层不行吗

当我们在做数据需求时,会不会有这样的疑问:我直接能从DWD层很方便的取出想要的数据,为什么还要多此一举建立DWS层的汇总表呢?那是不是意味着可以不用建立DWS层的表呢,答案是:可以的。但是这有一个前提,就是业务场景不复杂。从短期来看可以快速满足数据需求的开发,但是长期来看,会存在如下的问题:

  • 对于复杂的业务场景而言,会出现很多跨域、跨事实的交叉探查,如果没有沉淀出DWS层的指标进行统一口径的收口,那么相同的指标会出现不同的口径和命名,其后果就是取数变得越来越不方便,而且容易造成业务怀疑数据是否正确的尴尬局面。
  • 公共指标没有统一计算,当每次需要相同的指标时,则需要重新计算一遍取数逻辑,不仅效率不高(需要关联表,计算指标),而且会造成计算资源浪费。

DWS层设计

以分析的主题对象作为建模驱动,基于上层的应用和产品的指标需求,构建公共粒度的汇总指标表。以宽表化手段物理化模型,构建命名规范、口径一致的统计指标,为上层提供公共指标,建立汇总宽表。如:形成日,周,月粒度汇总明细,或者基于某一个维度,如商品类目粒度的汇总日表,统计便于下一步报表数据结构的组织。

DWS层的基本特点

  • DWS层是面向分析维度进行设计的,分析维度通常是业务经常需要的看数据的角度。
  • DWS层的表服务于数据报表和数据产品的指标需求
  • ADS层的指标数据会存在交叉探查的情况,所以DWS层的指标要保持命名和口径一致,避免ADS层的指标数据混乱
  • DWS是公共汇总层,提供不同维度的统计指标,指标的口径要保持一致,并且要提供详细的描述
  • 以宽表的形式进行设计,比如相同粒度的统计指标可以放在一起,避免创建太多的表
  • 公共汇总层的一个表通常会对应一个派生指标
  • DWS存储派生指标(统计周期+修饰词+统计粒度+原子指标),原子指标存储在DWD层的事实表中

原子指标与派生指标

所谓原子指标,即是业务过程的度量,就是明细事实表中的度量值。比如订单表,那么某个订单对应的订单金额就是一个原子指标,这个指标是伴随着订单的业务过程而产生的。

所谓派生指标,即由统计周期+修饰词+统计粒度+原子指标组合加工而成的指标

其中,统计周期:指的是想要统计的时间周期,比如天、周、月

       **修饰词**:指的是业务的约束,**通常出现在SQL的where条件中**,比如订单的下单渠道等等

       **统计粒度**:指的是维度组合,**通常出现在SQL的group by中**,比如统计商品一级类目对应的销售额,那一级类目就是统计粒度

DWS层的设计原则

关于汇总层的表建模应遵循以下的原则:

  • 数据公用性比如,汇总的聚集表能否与他人公用?基于某个维度的聚集是否是数据分析或者报表中经常使用的?如果满足这些情况,我们就有必要把明细数据沉淀到汇总表中。
  • 不跨数据域数据域是在较高层次上对数据进行分类聚集的抽象,如交易统一划到交易域下,商品的新增、修改放到商品域下。
  • 区分统计周期表命名上要能说明数据的统计周期,如_1d 表示最近1天,_td 截止到当天,_nd 表示最近N天。
  • 避免多个层级的数据应该避免将不同层级的数据放在一起,比如,如果存在7天和30天的事实,我们可以选择用两列存放7天和30天的事实,但是需要在列名和字段注释上说明清楚。同时我们也可以使用两张表分别存储不同统计周期的数据加以区分。
  • 聚集是不跨越事实的聚集是针对原始星型模型进行的汇总,为了获取和查询原始模型一致的结果,聚集的维度和度量必须与原始模型保持一致,因此聚集是不跨事实的。横向钻取(交叉探查)是针对多个事实基于一致性维度进行的分析,很多时候采用融合事实表,预先存放横向钻取的结果,从而提高查询性能。因此融合事实表是一种导出模式而不是聚集。

DWS层设计步骤

  • 首先,确定聚集维度,即确定统计粒度,比如商品粒度
  • 然后,确定统计周期,比如天
  • 最后,确定聚集事实,即派生指标
CREATE TABLE IF NOT EXISTS dws_asale_trd_itm_ord_1d
(
    item_id                 BIGINT COMMENT '商品ID',
    item_title               STRING COMMENT '商品名称',
    cate_id                 BIGINT COMMENT '商品类目ID',
    cate_name               STRING COMMENT '商品类目名称',
    mord_prov               STRING COMMENT '收货人省份',
    confirm_paid_amt_sum_1d DOUBLE COMMENT '最近一天订单已经确认收货的金额总和'
)
COMMENT '商品粒度交易最近一天汇总事实表'
PARTITIONED BY (ds  STRING COMMENT '分区字段YYYYMMDD')
;

关于DWS层建设的一些问题

为什么一张DWS表通常只会对应一个派生指标?

在设计DWS表的时候,很多人会把所有可以聚合的维度进行cube,这样就得到了很多个派生指标,而这些派生指标放在同一张表中无疑会增加这张表的使用难度,比如在实际的取数时,往往只关心某个统计粒度的指标。实际上cube的数据尽量放在ADS层,这样在开发数据接口或者应用层取数时都会比较方便。所以在设计DWS层时,应当遵循前文提到的一些原则,一言以蔽之,就是设计尽量体现出公共性、使用简单并且用户很容易理解。

怎么设计出完美的DWS层表?

数仓建设是一个不断迭代的过程,数据建模同样是一个不断迭代的过程。同时,业务是不断变化的,建模人员对业务的理解也是变化的,这些也就注定了建模是一个迭代过程。虽然存在这些变化,但我们在数据建模的时候同样要遵循一定的规范,切不可随心所欲。

如何评价DWS层建设的好坏?

由于数仓的建设是与业务息息相关的,数仓建设的方法论仅仅只是指引我们构建数仓的一个方向,在实际的落地执行过程中会存在各种各样的问题,且不可被这些理论所禁锢。简单一句话就是:合适就好。所以,评价模型的好坏与否,更多的是从使用者的角度出发,比如简单、易于取数、表的数量恰好。

总结

本文主要介绍了数据仓库中DWS建设的基本思路,包括DWS层的特点、设计原则以及设计步骤,并对DWS层建设存在的一些问题进行了阐述。当然,这些只是DWS层建模的一些方法论,智者见智仁者见仁,在实际的数据建模过程中可以参考这些方法论,但也要注意与具体的业务场景相结合,数据建模是建立在自己对业务的理解基础之上的,切不可一味地照搬,要灵活运用。另外,不要苛求建立完美的数据模型,应当追求简单、方便、易用。换句话说,建模没有对错之分,合适就好。

公众号【大数据技术与数仓】首发,关注领取资料

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 195,585评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 82,283评论 2 373
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 142,760评论 0 324
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,461评论 1 266
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,280评论 4 357
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,268评论 1 273
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,656评论 3 385
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,322评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,629评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,691评论 2 312
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,445评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,299评论 3 313
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,694评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,982评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,244评论 1 251
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,642评论 2 342
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,829评论 2 335

推荐阅读更多精彩内容