终于搞懂了PR曲线

PR(Precision Recall)曲线

问题

最近项目中遇到一个比较有意思的问题, 如下所示为:

<img src="https://gitee.com/yfor1008/pictures/raw/master/abnormity_PR.png" alt="" style="zoom: 67%;" />

图中的PR曲线很奇怪, 左边从1突然变到0.

PR源码分析

为了搞清楚这个问题, 对源码进行了分析. 如下所示为上图对应的代码:

from sklearn.metrics  import precision_recall_curve
import matplotlib.pyplot as plt
score = np.array([0.9, 0.8, 0.7, 0.6, 0.3, 0.2, 0.1])
label = np.array([0, 1, 1, 1, 0, 0, 0])
precision, recall, thres = precision_recall_curve(label, score)
plt.plot(recall, precision)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.show()

代码中得到precisionrecall使用的是sklearn.metrics.precision_recall_curve, 下面为从其对应的源码中抽取出来的关键代码:

# 按预测概率(score)降序排列
desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1]
y_score = y_score[desc_score_indices]
y_true = y_true[desc_score_indices]

# 概率(score)阈值, 取所有概率中不相同的
distinct_value_indices = np.where(np.diff(y_score))[0]
threshold_idxs = np.r_[distinct_value_indices, y_true.size-1]
thresholds = y_score[threshold_idxs]

# 累计求和, 得到不同阈值下的 tps, fps
tps = np.cumsum(y_true)[threshold_idxs]
fps = 1 + threshold_idxs - tps

# PR
precision = tps / (tps + fps)
precision[np.isnan(precision)] = 0 # 将nan替换为0
recall = tps / tps[-1]
last_ind = tps.searchsorted(tps[-1]) # 最后一个tps的index
sl = slice(last_ind, None, -1) # 倒序
precision = np.r_[precision[sl], 1] # 添加 precision=1, recall=0, 可以让数据从0开始
recall = np.r_[recall[sl], 0]

从代码中总结了计算PR的几个关键步骤:

  1. 对于预测概率(score)排序, 从高到低
  2. 以预测概率(score)作为阈值统计tpsfps
  3. 计算precisionrecall, 并倒序

这里补充说明几个特点:

  1. 以测试数据的预测概率(score)作为阈值, 因而阈值只能在测试数据预测概率(score)集合中, 不是连续变化的;
  2. 统计tpsfps时, 统计的是大于等于阈值的数据的个数, 因而理想情况下, tps>=1fps>=1, 这里说的是理想情况下, 不理想情况后面说明;
  3. 测试数据预测概率(score)可能不会出现为1的情况, 此种情况下, recall=0, 为了使得PR曲线从0开始, 添加了recall=0, precision=1;
  4. 使用倒序, 让阈值从小到大, 因而PR曲线是从左向右画的, 如下图所示:
image

问题原因分析

弄清楚了PR原理及计算方法, 就好分析上述问题产生的原因了.

1的来历

从上述原理及计算过程分析可以看到, 最后添加了recall=0, precision=1, 对应图中最左边的1, 这里就知道了1是怎么来的;

0的来历

precision的计算公式是precision=TP/(TP+FP), 理想情况下(score值越大, Positive的可能性就越大), 随着阈值的增加, TP越来越小, FP越来越小, precision是越来越大的, 是不可能出现为0情况的; 只有当TP=0时, precision才会出现为0的情况, 这种情况属于非理想情况(score值越大, Positive的可能性不一定越大).

来看看tps的计算方法, 统计的是大于等于阈值thres的数据中为Positive的个数, 只有Positive个数为0的情况下, tps才能为0, 那么thres对应的数据就不是Positive的, 而是Negative的.

我们来看看上面例子中的数据:

score 0.9 0.8 0.7 0.6 0.3 0.2 0.1
label 0 1 1 1 0 0 0

从上表中可以看到, 最大score=0.9的标签为0, 这里对应图中precision=0的情况, 这里就知道了0是怎么来的: 数据中有存在最高概率为Negative的数据.

这里可以做个扩展, 理想情况下, PR曲线从右向左, precision应该是越来越大的, 如果出现了减小或者变为0的情况, 可看看对应阈值下的数据是否存在标签有误, 或者是困难样本.

解决方法

最好的方法, 是通过PR曲线分析是否存在标签有错误的样本或者困难样本, 然后对测试样本进行调整.

这里有2个折中的解决方法, 可以去除这种突变:

一是限制显示范围:

plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])

一是把最后一个数据去除:

precision = precision[:-1]
recall = recall[:-1]

PR 与 ROC(Receiver Operating Characteristics)曲线

相互关系

有文章已经证明, PR 和 ROC 可以相互转换:

Theorem 3.1. For a given dataset of positive and negative examples, there exists a one-to-one correspon- dence between a curve in ROCspace and a curve in PR space, such that the curves contain exactly the same confusion matrices, if Recall != 0

详见: The Relationship Between Precision-Recall and ROC Curves, 网上也有很多资料有详细的说明, 下图为二者的变化趋势:

image

优劣

PR 和 ROC 的区别主要在于不平衡数据的表现: PR对数据不平衡是敏感的, 正负样本比例变化会引起PR发生很大的变化; 而ROC曲线是不敏感的, 正负样本比例变化时ROC曲线变化很小. 如下图所示为不同比例正负样本情况下PR和ROC的变化:

image

ROC曲线变化很小的原因分析: tpr=TP/P, fpr=FP/N, 可以看到其计算都是在类别内部进行计算的, 只要数据内部的比例不发生变化, ROC也不会发生变化.

参考:

  1. 分类模型评估之ROC-AUC曲线和PRC曲线_皮皮blog-CSDN博客_auc曲线

  2. 精确率、召回率、F1 值、ROC、AUC 各自的优缺点是什么? - 知乎 (zhihu.com)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容