GMAT备考的奇偶性: 奇数(odd),又称单数,是整数中不能被2整除的数,奇数的个位为1,3,5,7,9。可用2k+1表示,这里k就是整数。
偶数(even),又称双数,若某数是2的倍数,它就是偶数(双数),可表示为2k。 所有整数不是奇数(单数),就是偶数(双数)。
奇数个奇数相加减=奇数,偶数个奇数相加减=偶数,奇数和偶数相加减=奇数,任意个偶数相加减=偶数,相乘时有一个偶数时结果是偶数,只有全部是奇数相乘结果才是奇数。
例: If n is an integer, is n even?
(1) n^2-1 is an odd integer.
(2) 3n + 4 is an even integer.
A Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D EACH statement ALONE is sufficient.
E Statements (1) and (2) TOGETHER are NOT sufficient
【解析】D 条件1:n^2-1是奇数,n^2是偶数,n即为偶数(一个数的平方的奇偶性和这个数本身的奇偶性是一致的),充分; 条件2:3n + 4是偶数,3n是偶数,n即为偶数,充分。
If x、y is positive integer, is xy even?
(1)y=x+1
(2)y= x^2+1
A Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D EACH statement ALONE is sufficient.
E Statements (1) and (2) TOGETHER are NOT sufficient
【解析】D 条件1:y=x+1,x和y就是连续的两个整数,那么x和y一奇一偶,xy是偶数,充分; 条件2:y=x^2+1,y和x^2就是连续的两个整数,因为x^2和x的奇偶性一致,就能得到y和x还是一奇一偶,xy是偶数,充分。
If A and B are positive integers such that A-B and A / B are both even integers, which of the following must be an odd integer?
(A)A/2 (B)B/2 (C)(A+B)/2 (D)(A+2)/2 (E)(B+2)/2
【解析】D A-B是偶数:那么A和B都是奇数或都是偶数; A/B是偶数:那么A=B*偶数,A一定是偶数; 所以A,B都是偶数,假设B=2N,A=B*偶数=2N*偶数=2N*2M=4MN; 带入选项: A/2=2MN,偶数,排除; B/2=N,奇偶性不确定,排除; (A+B)/2=2MN+N,奇偶性不确定,排除; (A+2)/2 =2MN+1,一定是奇数,正解; (B+2)/2=N+1,奇偶性不确定,排除。
If x and y are integers, is y an even integer?
(1) 2y – x = x^2 – y^2 (2) x is an odd integer.
A Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
B Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
C BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
D EACH statement ALONE is sufficient.
E Statements (1) and (2) TOGETHER are NOT sufficient.
【解析】A 条件1:y(y+2)=x(x+1),x和x+1是连续的两个整数,所以x和x+1一奇一偶,x(x+1)是偶数,所以y(y+2)是偶数,y和y+2的奇偶性是一致的,所以只能是y和y+2同为偶数,充分; 条件2:x是奇数,x和y的奇偶性无关,y奇偶性未知,不充分。
想要了解更多GMAT备考经验,可私信问我哦。