关联分析--概述(项集、关联规则、支持度、置信度、提升度)

1.支持度(Support)

    支持度表示项集{X,Y}在总项集里出现的概率。公式为:

              Support(X→Y) = P(X,Y) / P(I) = P(X∪Y) / P(I) = num(XUY) / num(I)

其中,I表示总事务集。num()表示求事务集里特定项集出现的次数。 

            比如,num(I)表示总事务集的个数

                        num(X∪Y)表示含有{X,Y}的事务集的个数(个数也叫次数)。   

2.置信度 (Confidence)

  置信度表示在先决条件X发生的情况下,由关联规则”X→Y“推出Y的概率。即在含有X的项集中,含有Y的可能性,公式为:

              Confidence(X→Y) = P(Y|X)  = P(X,Y) / P(X) = P(XUY) / P(X)

3.提升度(Lift)

    提升度表示含有X的条件下,同时含有Y的概率,与Y总体发生的概率之比。

              Lift(X→Y) = P(Y|X) / P(Y)

    例1,已知有1000名顾客买年货,分为甲乙两组,每组各500人,其中甲组有500人买了茶叶,同时又有450人买了咖啡;乙组也有500人,但只有450人买了咖啡,没有人买茶叶,如表(1)所示:


表(1)年货购买表


      试求解 1)”茶叶→咖啡“的支持度

                  2) "茶叶→咖啡"的置信度

                  3)”茶叶→咖啡“的提升度

    分析:

        设X= {买茶叶},Y={买咖啡},则规则”茶叶→咖啡“表示”即买了茶叶,又买了咖啡“,

        1)对甲组,有:

              Sup1(X→Y) = Num(XUY)/Num(I) = 450/500 = 90%

              Conf1(X→Y) = Num(XUY)/Num(X) = 450/500 = 90%

      从甲组可以看出,{X,Y}有比较强的相关性。

          2)对乙组,有:

              Sup2(X→Y) = Num(XUY)/Num(I) = 0/500 = 0%

              Conf2(X→Y) = Num(XUY)/Num(X) = 0/0 = 0%

        从乙组可以看出,{X,Y}没有相关性。

          3) 从总体上,讨论{X,Y}有没有相关性,可以使用总体的Lift{X,Y}提升度来判别。

          则总的支持度、置信度、提升度,分别如下:

                ”茶叶→咖啡“总的支持度为: Sup{X→Y} = Num(XUY)/Num(all) = 450/1000 = 45%

                ”茶叶→咖啡“总的置信度度为: Conf{X→Y} = Num(XUY)/Num(X) = 450/500= 90%

          ”茶叶→咖啡“总的提升度为

              Lift(X→Y) = Confidence(X→Y) / P(Y) = 90% /  ((450+450) / 1000) = 90% / 90% = 1

        由于提升度Lift(X→Y) =1,表示X与Y相互独立,即是否有X,对于Y的出现无影响。也就是说,是否购买咖啡,与有没有购买茶叶无关联。即规则”茶叶→咖啡“不成立,或者说关联性很小,几乎没有,虽然它置信度高达90%,但它不是一条有效的关联规则。

        满足最小支持度和最小置信度的规则,叫做“强关联规则”。然而,强关联规则里,也分有效的强关联规则和无效的强关联规则。

        如果Lift(X→Y)>1,则规则“X→Y”是有效的强关联规则。

        如果Lift(X→Y) <=1,则规则“X→Y”是无效的强关联规则。

        特别地,如果Lift(X→Y) =1,则表示X与Y相互独立。




计算支持度、置信度、提升度

全部声量:100            宝宝月龄声量:45            产地声量:19          宝宝月龄与产地交集:10

宝宝月龄-产地支持度:10/100

宝宝月龄-产地置信度:10/45

宝宝月龄-产地提升度:(10/45) /  (19/100)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容