《Recursive neural conditional random fields for aspect-based sentiment analysis》阅读笔记

论文链接:http://pdfs.semanticscholar.org/893a/9ea38da739af53d4cb8ec5d0e722b0e6c6e4.pdf

本文的任务:extract aspect and opinion terms/phrases for each review

In aspect-based sentiment analysis, the core component is to extract aspects or features of a product/service from a review, along with the opinions being expressed. aspect-based sentiment analysis任务是做什么

过去的方法主要分为两类:

第一种:从一个seed集合,使用句法规则和aspect及opinion之间的关联来积累aspect terms和opinion terms。但是这种方法很依赖与手动定义的规则,并且严格遵循特定的词性规则,例如opinion词是形容词。

第二种:sequence labeling classifier,例如CRFs和HMMs,使用feature engineering,词典和有标注的数据集。This approach requires extensive efforts for designing hand-crafted features, and only combines features linearly when a CRF/HMM is applied

使用深度学习进行情感分析的方法分为两类:一类是句子级别的情感预测,一类是phrase/word-level情感预测。


本文的方法:


包括两部分:基于每句话的依存树构造的recursive neural network,为了学习到句子中每个词的上下文的high-level representation,输出会送到Conditional random field(CRF)学习从high-level特征到标签的映射。Because CRFs have proven to be promising for this kind of sequence tagging problems.

与本文方法类似的是:【1】,使用标准的recurrent neural network,很依赖于word embeddings的质量,除此之外,没有考虑句子结构中的依存关系。

The tree structure used for RNNs generally adopts two forms: constituency tree and dependency tree。在constituency tree中,所有的词都在叶节点中,每个内部节点表示一个短语或句子的一部分,跟节点代表整个句子;dependency树,每个节点代表一个词,用依存关系与其他节点关联。


标注类别

每个节点n,是与一个词w相关联的,每个依存关系r与一个矩阵关联

依存关系,在训练时学习
transformation矩阵,将word embedding xw与一个隐藏向量hn关联

先计算叶子结点的隐状态:

叶节点隐藏状态


内部节点的隐状态


隐状态计算公式

CRF:

In a linear-chain CRF, which is empolyed in this paper, there are two different cliques: unary clique(U) representing input-output connection, pairwise clique(P) representing adjacent output connection.




【1】Fine-grained Opinion Mining with Recurrent Neural Networks and Word Embeddings,论文链接:paper

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容