SQLAlchemy lazy load和eager load

lazy load 和 eager load

  • SQLAlchemy支持lazy load, eager load和no load 三种关联对象的查询方式。默认的是lazy load。
  • lazy load 将会返回一个对象,先不会对关联对象进行查询。直到第一次访问其关联对象,才会进行关联对象查询
  • eager load 会在返回对象前进行关联对象的查询。

lazy load

  • 例如:

我们先创建user和address两张表,并插入数据:

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy import Column, Integer, String, or_
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import ForeignKey
from sqlalchemy.orm import relationship
from sqlalchemy.orm import selectinload, joinedload, contains_eager

engine = create_engine('sqlite:///:memory:', echo=True)

Base = declarative_base()

class User(Base):
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String)
    fullname = Column(String)
    nickname = Column(String)

    def __repr__(self):
       return "<User(name='%s', fullname='%s', nickname='%s')>" % (
                            self.name, self.fullname, self.nickname)

class Address(Base):
    __tablename__ = 'addresses'
    id = Column(Integer, primary_key=True)
    email_address = Column(String, nullable=False)
    user_id = Column(Integer, ForeignKey('users.id'))

    user = relationship("User", back_populates="addresses")

    def __repr__(self):
        return "<Address(email_address='%s')>" % self.email_address

User.addresses = relationship(
     "Address", back_populates="user")


Base.metadata.create_all(engine)
Session = sessionmaker(bind=engine)
session = Session()

jack = User(name='jack', fullname='Jack Bean', nickname='gjffdd')
jack.addresses = [Address(email_address='jack@google.com'),
                  Address(email_address='j25@yahoo.com')]

ed = User(name='ed', fullname='Ed Jones', nickname='edsnickname')
ed.addresses = [Address(email_address='ed@google.com')]

session.add(jack)
session.add(ed)
session.commit()

对其进行默认的lazy load:

users = session.query(User).join(Address).filter(or_(User.name=='jack', User.name=='ed')).all()

log显示它只运行了SQL:

SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname 
FROM users JOIN addresses ON users.id = addresses.user_id 
WHERE users.name = 'jack' OR users.name = 'ed'

直到访问user的addresses:

for user in users:
    print(user.addresses)
    
# 输出:
# [<Address(email_address='j25@yahoo.com')>, <Address(email_address='jack@google.com')>]
# [<Address(email_address='ed@google.com')>]

才查询其addresses:

SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id 
FROM addresses 
WHERE 1 = addresses.user_id

SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id 
FROM addresses 
WHERE 2 = addresses.user_id

eager load

  • SQLAlchemy根据实现方式,有selectinload, joinedload和Join + Eagerload三种eager load的实现方式
selectinload
users = session.query(User)
        .options(selectinload(User.addresses))
        .filter(or_(User.name=='jack', User.name=='ed')).all()

将会执行:

SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname 
FROM users 
WHERE users.name = 'jack' OR users.name = 'ed'

SELECT addresses.user_id AS addresses_user_id, addresses.id AS addresses_id, addresses.email_address AS addresses_email_address 
FROM addresses 
WHERE addresses.user_id IN (1, 2)

在访问时就可以直接获得数据

for user in users:
    print(user.addresses)
# 输出:
# [<Address(email_address='j25@yahoo.com')>, <Address(email_address='jack@google.com')>]
# [<Address(email_address='ed@google.com')>]

需要注意的是以下这种多对一的情况:

addresses = session.query(Address)
            .options(selectinload(Address.user))
            .filter(User.name=='jack').all()
for address in addresses:
    print(address)
# 输出:
# <Address(email_address='j25@yahoo.com')>
# <Address(email_address='jack@google.com')>
# <Address(email_address='ed@google.com')>

对addresses实际上是没有filter的

SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id 
FROM addresses, users 
WHERE users.name = 'jack'

SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname 
FROM users 
WHERE users.id IN (1, 2)

这种情况需要使用Join + Eagerload的方法

joinedload
  • 会直接进行left out join
users = session.query(User)
        .options(joinedload(User.addresses))
        .filter(or_(User.name=='jack', User.name=='ed')).all()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname, addresses_1.id AS addresses_1_id, addresses_1.email_address AS addresses_1_email_address, addresses_1.user_id AS addresses_1_user_id 
FROM users LEFT OUTER JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id 
WHERE users.name = 'jack' OR users.name = 'ed'

在访问时就可以直接获得数据

for user in users:
    print(user.addresses)
# 输出:
# [<Address(email_address='j25@yahoo.com')>, <Address(email_address='jack@google.com')>]
# [<Address(email_address='ed@google.com')>]

同样需要注意的是多对一的情况:

addresses = session.query(Address)
            .options(joinedload(Address.user))
            .filter(User.name=='jack').all()
for address in addresses:
    print(address)
# 输出:
# <Address(email_address='j25@yahoo.com')>
# <Address(email_address='jack@google.com')>
# <Address(email_address='ed@google.com')>
SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id, users_1.id AS users_1_id, users_1.name AS users_1_name, users_1.fullname AS users_1_fullname, users_1.nickname AS users_1_nickname 
FROM users, addresses LEFT OUTER JOIN users AS users_1 ON users_1.id = addresses.user_id 
WHERE users.name = 'jack'
Join + Eagerload
addresses = session.query(Address)
            .join(Address.user)
            .filter(User.name=='jack')
            .options(contains_eager(Address.user)).all()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.nickname AS users_nickname, addresses.id AS addresses_id, addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id 
FROM addresses JOIN users ON users.id = addresses.user_id 
WHERE users.name = 'jack'
for address in addresses:
    print(address)
# 输出:
# [<Address(email_address='j25@yahoo.com')>
# <Address(email_address='jack@google.com')>]
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354