程序员代码下的许豪杰(下)(技术篇)

接上篇,这一篇将从技术层面讲讲是如何实现的。阅读本文您将会了解如何用python爬取微博的评论以及如何用python word_cloud库进行数据可视化。

上一篇:程序员代码下的许豪杰

准备工作

打开微博pc m站并找到许豪杰该条微博地址:https://m.weibo.cn/status/4132385564040383

为什么要用m站地址?因为m站可以直接抓取到api json数据,而pc站虽然也有api返回的是html,相比而言选取m站会省去很多麻烦

打开该页面,并且用chrome 的检查工具 查看network,可以获取到评论的api地址。

chrome查看

数据抓取

首先观察api返回

image.png

从返回地址上可以看到可以通过参数page 改变请求的页码,并且每页都回返回总条数和总页码数。这里我决定采用多线程来抓去(其实数据量不大,也可以单线程跑)。

其中在爬取数据的时候会面临几个问题:

1.存储选择

我这里选用了MongoDB作为数据存储,因为api通常返回的是json数据而json结构和MongoDB的存储方式可以结合的很默契,不需要经过任何处理可以直接的进行插入。

2.防爬虫

很多网站可能会做一些防爬虫的处理,面对同一个请求ip的短时间的高频率请求会进行服务隔断(直接告诉你服务不可用),这个时候可以去网上找一些代理进行请求。

3.多线程的任务分配

采用多线程爬取你当然不能让多个线程去爬取同样的链接做别人已经做过的事情,那样多线程毫无意义。所以你需要制定一套规则,让不同线程爬取不同的链接。

# coding=utf-8
from __future__ import division
from pymongo import MongoClient
import requests
import sys
import re
import random
import time
import logging
import threading
import json
from os import path
import math

# 爬取微博评论
# m站微博地址
weibo_url = 'https://m.weibo.cn/status/4132385564040383' 

thread_nums = 5  #线程数

#代理地址
proxies = {
  "http": "http://171.92.4.67:9000",
  "http": "http://163.125.222.240:8118",
  "http": "http://121.232.145.251:9000",
  "http": "http://121.232.147.247:9000",
  
}


# 创建 日志 对象
logger = logging.getLogger()
handler = logging.StreamHandler()
formatter = logging.Formatter(
    '%(asctime)s %(name)-12s %(levelname)-8s %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)

mongoconn = MongoClient('127.0.0.1', 27017)
mdb = mongoconn.data_analysis
das_collection = mdb.weibo

weiboid_reobj = re.match(r'.*status/(\d+)', weibo_url)
weibo_id = weiboid_reobj.group(1)


def scrapy_comments(weibo_id, page):
    weibo_comment_url = 'https://m.weibo.cn/api/comments/show?id=%s&page=%d' % (
        weibo_id, page)
    res = requests.get(weibo_comment_url)
    res_obj = json.loads(res.content)
    return res_obj


def import_comments(threadName, weibo_id, page_start, page_end):
    logger.info('开始线程:%s' % threadName)
    for page in range(page_start, page_end + 1):
        logging.info('读取第%s页' % page)
        time.sleep(1)
        # continue
        try:
            res_obj = scrapy_comments(weibo_id, page)
            logging.info('该页有%s条记录' % len(res_obj['data']))
        except:
            logging.error('读取%s页时发生错误' % page)
            continue
        if res_obj['ok'] == 1:
            comments = res_obj['data']
            for comment in comments:
                comment_text = re.sub(
                    r'</?\w+[^>]*>', '', comment['text']).encode('utf-8')
                if re.search(r'回复@.*:', comment_text):
                    # 过滤掉回复别人的评论
                    continue
                comment['text'] = comment_text
                comment['weibo_id'] = weibo_id
                logging.info('读取评论:%s' % comment['id'])
                try:
                    if das_collection.find_one({'id': comment['id']}):
                        logging.info('在mongodb中存在')
                    else:
                        logging.info('插入记录:%s' % comment['id'])
                        das_collection.insert_one(comment)
                except:
                    logging.error('mongodb发生错误')
        else:
            logging.error('读取第%s页时发生错误' % page)
    logging.info('线程%s结束' % threadName)
    # res_obj = scrapy_comments(weibo_id, page)


if __name__ == '__main__':
    # 分配不同链接到不同的线程上去
    res_obj = scrapy_comments(weibo_id, 1)
    if res_obj['ok'] == 1:
        total_number = res_obj['total_number']
        logging.info('该条微博有:%s条评论' % total_number)
        max_page = res_obj['max']
        page_nums = math.ceil(max_page / thread_nums)
    else:
        raise

    # print max_page
    # print page_nums

    for i in range(1, thread_nums + 1):
        if i < thread_nums:
            page_end = page_nums * i
        else:
            page_end = max_page
        page_start = (i - 1) * page_nums + 1

        t = threading.Thread(target=import_comments, args=(
            i, weibo_id, int(page_start), int(page_end)))
        t.start()

数据整理可视化(data visualization)

运行脚本完毕,我的MongoDB得到了2万多条评论数据,接下来要做的事是对这部分数据进行提取、清洗、结构化等操作。这里顺便说明一下python 数据分析的 大致基本流程。

1.与外界进行交互
这个过程包括数据的获取、读取。不管是从网络资源上爬取、还是从现有资源(各样的文件如文本、excel、数据库存储对象)

2.准备工作
对数据进行清洗(cleaning)、修整(munging)、整合(combining)、规范化(normalizing)、重塑(reshaping)、切片(slicing)和切块(dicing)

3.转换
对数据集做一些数学和统计运算产生新的数据集

4.建模和计算
将数据跟统计模型、机器学习算法或其他计算工具联系起来

5.展示
创建交互式的或静态的图片或文字摘要

下面我们来进行2、3及5的工作:

# coding=utf-8
import sys
from pymongo import MongoClient
import random
# 分词库
# from snownlp import SnowNLP
import jieba
import uniout
from collections import Counter, OrderedDict
# 词语云 文本统计可视化库
from wordcloud import WordCloud


mongoconn = MongoClient('127.0.0.1', 27017)
mdb = mongoconn.data_analysis
das_collection = mdb.weibo


total_counts = das_collection.find().count()

# random_int = random.randint(0, total_counts - 1)
docs = das_collection.find()
print docs.count()
words_counts = {}
for doc in docs:
    print doc
    comment_text = doc['text'].encode('utf-8')
    if len(comment_text) == 0:
        continue
    words = jieba.cut(comment_text)
    for word in words:
        if word not in words_counts:
            words_counts[word] = 1
        else:
            words_counts[word] += 1

for word in words_counts.keys():
    if words_counts[word] < 2 or len(word) < 2:
        del words_counts[word]

# print words_counts.items()
#注意要让中文不乱码要指定中文字体
#fit_words 接收参数是dict  eg:{'你':333,'好':23}  文字:出现次数
wordcloud = WordCloud(
    font_path='/Users/cwp/font/msyh.ttf',
    background_color='white',
    width=1200,
    height=1000
).fit_words(words_counts)
import matplotlib.pyplot as plt
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()

介绍下以上代码:
我们主要用到了2个工具,jieba和word_cloud。前者对中文进行分词后者图形化展示词语的出现频率。
众所周知,中文系的语言处理恐怕是最难的自然语言处理(NLP)的语种。就基本的分词而言都是一项比较困难的工作,(英语句子中每个单词都是有空格分开的,而中文是由单个字组成词连接成串组成句).
举个例子,请用“孩提”造句,"那个男孩提交完代码就下班了"。如果人工分词,可以知道"男孩"和"提交"应该是分开的2个词,但是对于机器而言,要辨别"提"应该与"男"还是"交"进行组词就很难办了。要想机器能够更精确的辨别这类问题,就需要让机器不停学习,让它知道这种情况该这么分而不是那么分。研究中文自然语言处理将是一个长久而大的工程,对于分析数据(我们不是要研究自然语言处理😏),这里就借助jieba这个库进行工作了.

对于word_cloud,图形化文本统计,网上有不少的博文都贴了代码,但我想说的是我不了解它们是不是真的运行出了结果。因为fit_words 这个函数接收的是dict而不是list,官方文档和函数doc其实写错了,在github上有披露。

最后得到结果:

结果

一些用到的工具

1.word_cloud A little word cloud generator in Python

2.jieba 结巴中文分词

3.Requests is the only Non-GMO HTTP library for Python, safe for human consumption.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,265评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,078评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,852评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,408评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,445评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,772评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,921评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,688评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,130评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,467评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,617评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,276评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,882评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,740评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,967评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,315评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,486评论 2 348

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,629评论 18 139
  • GitHub 上有一个 Awesome - XXX 系列的资源整理,资源非常丰富,涉及面非常广。awesome-p...
    若与阅读 18,629评论 4 418
  • # Python 资源大全中文版 我想很多程序员应该记得 GitHub 上有一个 Awesome - XXX 系列...
    aimaile阅读 26,448评论 6 428
  • 环境管理管理Python版本和环境的工具。p–非常简单的交互式python版本管理工具。pyenv–简单的Pyth...
    MrHamster阅读 3,787评论 1 61
  • “毕业的玻璃窗,终究还是撞碎了。全世界在一瞬间,敞开大门。我们曾一心,盼望飞出笼子,却在这一天真正到来的时候...
    小溪的自白阅读 386评论 0 6