cs231n课程笔记:反向传播

墙裂推荐Stanford这节课,老师讲的很细致易懂,而且老师很好看(重点!!)


笔记参考:https://zhuanlan.zhihu.com/p/21407711?refer=intelligentunit
感谢原作者的翻译!!
非原创,禁止转载本文


内容列表:

    1. 简介
    1. 简单表达式和理解梯度
    1. 直观理解反向传播
    1. 模块:Sigmoid例子
    1. 反向传播实践:分段计算
    1. 回传流中的模式
    • 非直观影响及其结果
    1. 用户向量化操作的梯度
    1. 小结

1. 简介

定义:反向传播是利用链式法则递归计算表达式的梯度的方法。

问题陈述:这节的核心问题是:给定函数 f(x),其中 x 是输入数据的向量,需要计算函数 f 关于 x 的梯度,也就是 ∇f(x)

作用:之所以关注上述问题,是因为在神经网络中 f对应的是损失函数(L),输入 x 里面包含训练数据和神经网络的权重。举个例子,损失函数可以是SVM的损失函数,输入则包含了训练数据(xi, yi), i = 1, ... , N, 权重 W 和偏差 b 。注意训练集是给定的(在机器学习中通常都是这样),而权重是可以控制的变量。因此,即使能用反向传播计算输入数据 xi 上的梯度,但在实践为了进行参数更新,通常也只计算参数(比如 Wb )的梯度。然而 xi 的梯度有时仍然是有用的:比如将神经网络所做的事情可视化便于直观理解的时候,就能用上。

2. 简单表达式和理解梯度

关于梯度、导数和偏导数的介绍这里不展开写了,有兴趣的小伙伴可以查看原文。不过倒是发现了一个有趣的偏导数:

上式是说,如果该变量比另一个变量大,那么梯度是1,反之为0。例如,若x = 4, y = 2,那么max是4,所以函数对于 y 就不敏感。也就是说,在 y
上增加 h ,函数还是输出为4,所以梯度是0:因为对于函数输出是没有效果的。当然,如果给 y 增加一个很大的量,比如大于2,那么函数 f 的值就变化了,但是导数并没有指明输入量有巨大变化情况对于函数的效果,他们只适用于输入量变化极小时的情况,因为定义已经指明:lim h→0

3. 直观理解反向传播

以函数 f(x, y, z) = (x + y) * z 为例,令 p = x + y ,如图所示:

上图的真实值计算线路展示了计算的可视化过程。前向传播从输入计算到输出(绿色),反向传播从尾部开始,根据链式法则递归地向前计算梯度(显示为红色),一直到网络的输入端。可以认为,梯度是从计算链路中回流。

反向传播是一个优美的局部过程。在整个计算线路图中,每个门单元都会得到一些输入并立即计算两个东西:1. 这个门的输出值,和2.其输出值关于输入值的局部梯度。门单元完成这两件事是完全独立的,它不需要知道计算线路中的其他细节。然而,一旦前向传播完毕,在反向传播的过程中,门单元门将最终获得整个网络的最终输出值在自己的输出值上的梯度。链式法则指出,门单元应该将回传的梯度乘以它对其的输入的局部梯度,从而得到整个网络的输出对该门单元的每个输入值的梯度。

这里对于每个输入的乘法操作是基于链式法则的。该操作让一个相对独立的门单元变成复杂计算线路中不可或缺的一部分,这个复杂计算线路可以是神经网络等。

下面通过例子来对这一过程进行理解。加法门收到了输入[-2, 5],计算输出是3。既然这个门是加法操作,那么对于两个输入的局部梯度都是+1。网络的其余部分计算出最终值为-12。在反向传播时将递归地使用链式法则,算到加法门(是乘法门的输入)的时候,知道加法门的输出的梯度是-4。如果网络如果想要输出值更高,那么可以认为它会想要加法门的输出更小一点(因为负号),而且还有一个4的倍数。继续递归并对梯度使用链式法则,加法门拿到梯度,然后把这个梯度分别乘到每个输入值的局部梯度(就是让-4乘以x和y的局部梯度,x和y的局部梯度都是1,所以最终都是-4)。可以看到得到了想要的效果:如果x,y减小(它们的梯度为负),那么加法门的输出值减小,这会让乘法门的输出值增大。

这里说的比较绕,我说一下我的理解。如果我直接给你们这个函数f(x, y, z) = (x + y) * z,给了初值(-2,5,-4)
问答环节来了!
我问:我要想让最后的输出值 f 变大,你们该怎么办呀?
你们可能会异口同声回答:减小x + y 的值不就行了,这么简单的问题!
我:为啥啊?
你们:因为 z 是负的!
我:好!还有别的办法吗?
你们:增大 z 的值啊!
我:这又是为啥啊?
你们:x + y是正的啊,初中生都知道!(小声bb:这博主行不行啊,问这么简单的问题...)
我:好了!大家表现很好!这个函数很简单,大家直接就看出来了。如果我给你们一个更加复杂、更长的函数(比如说一个神经网络的输出值与输入值之间的关系)还能看出来吗?不行了吧(哈哈...,具体可以往下看~)这时就要用到我们的链式法则求梯度了。大家翻到上一个图片,你们上面的回答反映到数学上就是和梯度相关啦。x + y 对应梯度都是 -4 ,又负!还4!减小就完事了!再看z,对应梯度是3,正的呀!增大!明白了吧。简单来说,就是高数中复合函数求导的问题,沿梯度方向变化使函数值变大!

因此,反向传播可以看做是门单元之间在通过梯度信号相互通信,只要让它们的输入沿着梯度方向变化,无论它们自己的输出值在何种程度上升或降低,都是为了让整个网络的输出值更高。

4. 模块化:Sigmoid例子

下面推导类似上面,简要过一下,详情看原文就可以了。重点需要记住激活函数sigmoid函数的导数!

上面介绍的门是相对随意的。任何可微分的函数都可以看做门。可以将多个门组合成一个门,也可以根据需要将一个函数分拆成多个门。现在看看一个表达式:

用sigmoid激活函数的2维神经元的例子。输入是[x0, x1],可学习的权重是[w0, w1, w2]。一会儿会看见,这个神经元对输入数据做点积运算,然后其激活数据被sigmoid函数挤压到0到1之间。
在上面的例子中可以看见一个函数操作的长链条,链条上的门都对wx的点积结果进行操作。该函数被称为sigmoid函数 σ(x) 。sigmoid函数关于其输入的求导是可以简化的(使用了在分子上先加后减1的技巧):

可以看到梯度计算简单了很多。举个例子,sigmoid表达式输入为1.0,则在前向传播中计算出输出为0.73。根据上面的公式,局部梯度为(1-0.73)*0.73~=0.2,和之前的计算流程比起来,现在的计算使用一个单独的简单表达式即可。因此,在实际的应用中将这些操作装进一个单独的门单元中将会非常有用。该神经元反向传播的代码实现如下:

w = [2,-3,-3] # 假设一些随机数据和权重
x = [-1, -2]

# 前向传播
dot = w[0]*x[0] + w[1]*x[1] + w[2]
f = 1.0 / (1 + math.exp(-dot)) # sigmoid函数

# 对神经元反向传播
ddot = (1 - f) * f # 点积变量的梯度, 使用sigmoid函数求导
dx = [w[0] * ddot, w[1] * ddot] # 回传到x
dw = [x[0] * ddot, x[1] * ddot, 1.0 * ddot] # 回传到w
# 完成!得到输入的梯度

5. 反向传播实践:分段计算

看另一个例子。假设有如下函数:

首先要说的是,这个函数完全没用,读者是不会用到它来进行梯度计算的,这里只是用来作为实践反向传播的一个例子,需要强调的是,如果对 xy 进行微分运算,运算结束后会得到一个巨大而复杂的表达式。然而做如此复杂的运算实际上并无必要,因为我们不需要一个明确的函数来计算梯度,只需知道如何使用反向传播计算梯度即可。下面是构建前向传播的代码模式:

x = 3 # 例子数值
y = -4

# 前向传播
sigy = 1.0 / (1 + math.exp(-y)) # 分子中的sigmoi          #(1)
num = x + sigy # 分子                                    #(2)
sigx = 1.0 / (1 + math.exp(-x)) # 分母中的sigmoid         #(3)
xpy = x + y                                              #(4)
xpysqr = xpy**2                                          #(5)
den = sigx + xpysqr # 分母                                #(6)
invden = 1.0 / den                                       #(7)
f = num * invden # 搞定!                                 #(8)

到了表达式的最后,就完成了前向传播。注意在构建代码s时创建了多个中间变量,每个都是比较简单的表达式,它们计算局部梯度的方法是已知的。这样计算反向传播就简单了:我们对前向传播时产生每个变量(sigy, num, sigx, xpy, xpysqr, den, invden)进行回传。我们会有同样数量的变量,但是都以d开头,用来存储对应变量的梯度。注意在反向传播的每一小块中都将包含了表达式的局部梯度,然后根据使用链式法则乘以上游梯度。对于每行代码,我们将指明其对应的是前向传播的哪部分。

# 回传 f = num * invden
dnum = invden # 分子的梯度                                         #(8)
dinvden = num                                                     #(8)
# 回传 invden = 1.0 / den 
dden = (-1.0 / (den**2)) * dinvden                                #(7)
# 回传 den = sigx + xpysqr
dsigx = (1) * dden                                                #(6)
dxpysqr = (1) * dden                                              #(6)
# 回传 xpysqr = xpy**2
dxpy = (2 * xpy) * dxpysqr                                        #(5)
# 回传 xpy = x + y
dx = (1) * dxpy                                                   #(4)
dy = (1) * dxpy                                                   #(4)
# 回传 sigx = 1.0 / (1 + math.exp(-x))
dx += ((1 - sigx) * sigx) * dsigx # Notice += !! See notes below  #(3)
# 回传 num = x + sigy
dx += (1) * dnum                                                  #(2)
dsigy = (1) * dnum                                                #(2)
# 回传 sigy = 1.0 / (1 + math.exp(-y))
dy += ((1 - sigy) * sigy) * dsigy                                 #(1)
# 完成! 嗷~~

需要注意的一些东西:

对前向传播变量进行缓存:在计算反向传播时,前向传播过程中得到的一些中间变量非常有用。在实际操作中,最好代码实现对于这些中间变量的缓存,这样在反向传播的时候也能用上它们。如果这样做过于困难,也可以(但是浪费计算资源)重新计算它们。

在不同分支的梯度要相加:如果变量x,y在前向传播的表达式中出现多次,那么进行反向传播的时候就要非常小心,使用+=而不是=来累计这些变量的梯度(不然就会造成覆写)。这是遵循了在微积分中的多元链式法则,该法则指出如果变量在线路中分支走向不同的部分,那么梯度在回传的时候,就应该进行累加。

6. 回流中的模式

一个有趣的现象是在多数情况下,反向传播中的梯度可以被很直观地解释。例如神经网络中最常用的加法、乘法和取最大值这三个门单元,它们在反向传播过程中的行为都有非常简单的解释。先看下面这个例子:

从上例可知:

加法门单元把输出的梯度相等地分发给它所有的输入,这一行为与输入值在前向传播时的值无关。这是因为加法操作的局部梯度都是简单的+1,所以所有输入的梯度实际上就等于输出的梯度,因为乘以1.0保持不变。上例中,加法门把梯度2.00不变且相等地路由给了两个输入。

取最大值门单元对梯度做路由。和加法门不同,取最大值门将梯度转给其中一个输入,这个输入是在前向传播中值最大的那个输入。这是因为在取最大值门中,最高值的局部梯度是1.0,其余的是0。上例中,取最大值门将梯度2.00转给了z变量,因为z的值比w高,于是w的梯度保持为0。

乘法门单元相对不容易解释。它的局部梯度就是输入值,但是是相互交换之后的,然后根据链式法则乘以输出值的梯度。上例中,x的梯度是-4.00x2.00=-8.00。

非直观影响及其结果

注意一种比较特殊的情况,如果乘法门单元的其中一个输入非常小,而另一个输入非常大,那么乘法门的操作将会不是那么直观:它将会把大的梯度分配给小的输入,把小的梯度分配给大的输入。在线性分类器中,权重和输入是进行点积 wTxi ,这说明输入数据的大小对于权重梯度的大小有影响。例如,在计算过程中对所有输入数据样本 xi 乘以1000,那么权重的梯度将会增大1000倍,这样就必须降低学习率来弥补。这就是为什么数据预处理关系重大,它即使只是有微小变化,也会产生巨大影响。对于梯度在计算线路中是如何流动的有一个直观的理解,可以帮助读者调试网络。

7. 用向量化操作计算梯度

上述内容考虑的都是单个变量情况,但是所有概念都适用于矩阵和向量操作。然而,在操作的时候要注意关注维度和转置操作。

矩阵相乘的梯度:可能最有技巧的操作是矩阵相乘(也适用于矩阵和向量,向量和向量相乘)的乘法操作:

# 前向传播
W = np.random.randn(5, 10)
X = np.random.randn(10, 3)
D = W.dot(X)

# 假设我们得到了D的梯度
dD = np.random.randn(*D.shape) # 和D一样的尺寸
dW = dD.dot(X.T) #.T就是对矩阵进行转置
dX = W.T.dot(dD)

提示:要分析维度!注意不需要去记忆dWdX的表达,因为它们很容易通过维度推导出来。例如,权重的梯度dW的尺寸肯定和权重矩阵W的尺寸是一样的,而这又是由XdD的矩阵乘法决定的(在上面的例子中XW都是数字不是矩阵)。总有一个方式是能够让维度之间能够对的上的。例如,X的尺寸是[10x3],dD的尺寸是[5x3],如果你想要dWW的尺寸是[5x10],那就要dD.dot(X.T)。

使用小而具体的例子:有些读者可能觉得向量化操作的梯度计算比较困难,建议是写出一个很小很明确的向量化例子,在纸上演算梯度,然后对其一般化,得到一个高效的向量化操作形式。

7. 小结

  • 对梯度的含义有了直观理解,知道了梯度是如何在网络中反向传播的,知道了它们是如何与网络的不同部分通信并控制其升高或者降低,并使得最终输出值更高的。

  • 讨论了分段计算在反向传播的实现中的重要性。应该将函数分成不同的模块,这样计算局部梯度相对容易,然后基于链式法则将其“链”起来。重要的是,不需要把这些表达式写在纸上然后演算它的完整求导公式,因为实际上并不需要关于输入变量的梯度的数学公式。只需要将表达式分成不同的可以求导的模块(模块可以是矩阵向量的乘法操作,或者取最大值操作,或者加法操作等),然后在反向传播中一步一步地计算梯度。


再次感谢原作者的翻译!!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,423评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,147评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,019评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,443评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,535评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,798评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,941评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,704评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,152评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,494评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,629评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,295评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,901评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,742评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,978评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,333评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,499评论 2 348

推荐阅读更多精彩内容

  • 说明: 本系列文章翻译斯坦福大学的课程:Convolutional Neural Networks for Vis...
    Warren_Liu阅读 1,928评论 0 6
  • “情不知所起,一往情深。生者可以死,死可以生。”这样至真至纯的缠绵悱恻,怎能不令人动容?少年因一幅画而深爱,从此,...
    默沫silent阅读 252评论 2 2
  • 钱钟书先生说,婚姻是一座围城,城外的人想努力挤进去,而城内的人却想出来。 不得而知,处于这样一个尴尬的没几年婚姻的...
    洛洛鱼小姐阅读 517评论 0 2
  • 文|什刹海 因为自身工作是项目管理方面的缘故,所以工作中基本内容大多是接触和推进相关公司项目,谈到项目管理推进这茬...
    什刹海_男阅读 1,018评论 0 48
  • 《汉书》有言“王者以民为天,而民以食为天”,可见吃确实是平民老百姓生活中的一件大事。但在如今奔小康的路上,...
    白衣聿人阅读 385评论 0 1