文本向量化方法比较:tf-idf、doc2bow、doc2vec、lsi、lda

先放个代码和结果,改天闲了总结。
用余弦距离计算相似度以判断向量化效果
tf-idf、doc2bow稀疏,适合短文本
doc2vec效果时好时坏,偶然性大,不稳
lsi、lda效果好且较稳,但lda计算量偏大

from gensim.models import doc2vec
from gensim import corpora,models
import jieba,os
from gensim.similarities.docsim import Similarity
raw_documents=[]
for root,p,files in os.walk('C:/Users/Administrator/Desktop/testdata/'):
    for file in files:
        f=open(root+file,encoding='utf8')
        s=f.read().replace(' ','').replace('\t','').replace('\r\n','').replace('\r','').replace('\n','')
        raw_documents.append(s)
        f.close()
print('data ok!')
corpora_documents = []
corpora_documents2=[]
for i, item_text in enumerate(raw_documents):
    words_list = list(jieba.cut(item_text))
    document = doc2vec.TaggedDocument(words=words_list, tags=[i])
    corpora_documents.append(words_list)
    corpora_documents2.append(document)
# 生成字典和向量语料
dictionary = corpora.Dictionary(corpora_documents)
corpus = [dictionary.doc2bow(text) for text in corpora_documents]
#sim模型
similarity = Similarity('-Similarity-index', corpus, num_features=10000)
#测试数据
test_data_1 = '周杰伦是个低调爱做慈善的好明星'
test_cut_raw_1 = list(jieba.cut(test_data_1))
#用sim计算相似度
'''test_corpus_1 = dictionary.doc2bow(test_cut_raw_1)
similarity.num_best = 5
print('——————————————sim———————————————')
print(similarity[test_corpus_1])  # 返回最相似的样本材料,(index_of_document, similarity) tuples'''

#doc2vec计算相似度
model = doc2vec.Doc2Vec(size=89, min_count=1, iter=10)
model.build_vocab(corpora_documents2)
model.train(corpora_documents2,total_examples=model.corpus_count, epochs=model.iter)
print('——————————————doc2vec———————————————')
inferred_vector = model.infer_vector(test_cut_raw_1)
sims = model.docvecs.most_similar([inferred_vector], topn=5)
print(sims)

#转化成tf-idf向量
tfidf_model=models.TfidfModel(corpus)
corpus_tfidf = [tfidf_model[doc] for doc in corpus]
#转化成lsi向量
lsi= models.LsiModel(corpus_tfidf,id2word=dictionary,num_topics=50)
corpus_lsi = [lsi[doc] for doc in corpus]
similarity_lsi=Similarity('Similarity-Lsi-index', corpus_lsi, num_features=1600,num_best=5)
test_corpus_3 = dictionary.doc2bow(test_cut_raw_1)  # 2.转换成bow向量
test_corpus_tfidf_3 = tfidf_model[test_corpus_3]  # 3.计算tfidf值
test_corpus_lsi_3 = lsi[test_corpus_tfidf_3]  # 4.计算lsi值
# lsi.add_documents(test_corpus_lsi_3) #更新LSI的值
print('——————————————lsi———————————————')
print(similarity_lsi[test_corpus_lsi_3])
#转化成lda向量
lda= models.LdaModel(corpus_tfidf,id2word=dictionary,num_topics=50)
corpus_lda = [lda[doc] for doc in corpus]
similarity_lda=Similarity('Similarity-LDA-index', corpus_lda, num_features=1600,num_best=5)
test_corpus_lda_3 = lda[test_corpus_tfidf_3]  # 4.计算lda值
# lda.add_documents(test_corpus_lda_3) #更新Lda的值
print('——————————————lda———————————————')
print(similarity_lda[test_corpus_lda_3])
print(lsi)
print('——————————————向量———————————————')
print(lsi[corpus_tfidf[0]])
#print(lsi.print_topics())
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,817评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,329评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,354评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,498评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,600评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,829评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,979评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,722评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,189评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,519评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,654评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,329评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,940评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,762评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,993评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,382评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,543评论 2 349

推荐阅读更多精彩内容