从一个电商平台的库存同步谈性能优化和方案落地

目录

  • 背景
    • 库存同步相关概念
    • 库存流转过程
  • 方案
    • 问题分析
    • 头脑风暴
    • 确定方案
    • 细化方案
  • 实施
    • 业务精简和标准化
    • 优化消息处理的逻辑
    • 队列操作高性能
    • CPU使用过高
  • 总结

下面的案例来自笔者的实际工作经历,涉及到的系统是笔者负责开发和维护的,一个国外的电商平台。

如果你对电商系统有所了解,将有助于你理解下面提到的业务。

如果你没有相关的知识背景,也没有关系,我会尽可能简化地将业务讲给你,并且只要求你理解关键概念即可。

背景

事情的起因是平台的某位高级主管的一封邮件,其中提到商品全量库存的实时性太低,需要各个部门的人协力解决。

库存同步相关概念

先介绍一下电商平台的一些基本概念。

image

库存就是仓库中某个SKU(最小库存单元)在仓库中实际有量。

比如某型号灰色8核16G内存的笔记本电脑就是一个SKU,在仓库中这个SKU有100台,那么它的库存量就是100。

  • 全量和增量库存

仓库每天都会把自己实际的库存量统计出来,这就是全量库存,仓库把库存量发送给各个销售终端,这就是全量库存同步

同时,为了保证库存的实时性,防止超卖(卖出比实际库存量更多的商品,仓库无法发出货品,有可能导致客诉)和仓库有货但客户买不到的情况,仓库会把库存的变化量也实时分发到各个终端,这个库存的变化量就是增量库存

举例来说,上面的那个SKU笔记本电脑有一台送到摄影棚去拍照了,那么这台就无法销售了,仓库就会推送一个-1的增量库存到销售终端;而如果它收到了消费者的退货,退货入库以后,将会推送一个+1的增量库存。

  • 多店铺与分盘

电商平台一般都会有多个店铺入驻,例如3C这个分类下面,可能有苹果、华为、三星、小米等店铺。

不同店铺的库存是独立的。

有时候一个SKU在多家店铺都有售,iPhone X/太空灰色/256GBXXX苹果平台旗舰店XXX手机大世界店XX苹果折扣店 就是三个不同的库存记录。

这就是多店铺库存

作为分销商,它的仓库中放着不同平台、不同品牌的商品。例如上面的手机,在深圳、广州、上海三个地区仓库都有货,并且是分别卖给天猫和京东的,那么它的库存记录就有6条,分别是:

No. 仓库 渠道
1 深圳 天猫
2 深圳 京东
3 广州 天猫
4 广州 京东
5 上海 天猫
6 上海 京东

这就是分盘库存

  • 库存清点时间和最后更新时间

在实际操作中,为了保证数据的准确性,平台会对库存的时间进行校验。

例如,仓库在凌晨 01:00 清点出某SKU库存量为100,则这条库存记录的库存清点时间就是01:00。

仓库在01:00清点完以后,在02:00收到了一个退货,那么就会推送一个+1的增量到平台。

一般情况下,全量先发出,平台应该先收到全量100,再收到增量+1,最后为101。

但如果由于某个中间环节出了问题,先收到增量+1,在收到全量100,那么最终的库存量将是100。全量库存会直接覆盖平台现在的库存量。

因此,如果有一个最后更新时间,记录是02:00收到的增量,那么当01:00的全量过来的时候,由于比增量时间要早,将被平台视为作废。

库存流转过程

实际的库存数据流转过程往往不是 「仓库——>平台」 这么短的链路,实际链路总是很长的:

InventoryDataSystemFlow

不同系统的性能不同,实现方式不同,越长的链路时延问题就越严重。

方案

问题分析

想要解决问题,首先要分析问题。作为平台技术负责人,我先统计了平台最近一个月的库存同步时间,大约是150分钟,并且每隔几天会延长几分钟。

然后我统计了最近一段时间全量库存的数据变化量,仅仅10天就增加了5w。

InventoryDataAmount
  • 问题定义:
    目前看来,从平台角度来讲,随着库存数据量的增加,处理时间不断延长,再加上整个链路很长,造成全量库存数据的实时性很差。

头脑风暴

分析完问题,我立即召开了团队的人员讨论解决方案,经过大家讨论,可以优化的环节是下面几个:

  1. 提升硬件配置

当你拼命练跑步避免迟到的时候,也许给你一辆车就解决问题了。

部门服务的资源紧张,配置极低。

  1. 修改消息处理逻辑

目前库存数据拆分粒度很细(分店铺分仓库分门店),加上网络时延,会造成处理时间延长。

  1. 优化消息处理的逻辑

库存数据由消息中心统一处理,消息中心会处理订单、商品、价格、会员、库存等等多种类型的数据,效率不高。

  1. 优化全量库存同步

从平台处理数据的代码流程着手优化。

确定方案

对于方案1需要金主批钱,方案2需要多个系统修改,这些不好谈;方案3需要改动整体架构,工作量巨大。

对于解决燃眉之急,方案4的可行性最高,改动量和影响范围最小。

细化方案

方案4优化全量库存同步,具体细化为下面三个方面

  1. 业务精简和标准化
  2. 数据处理高性能
  3. 队列操作高性能

下面在实施的时候一一详细说明。

实施

业务精简和标准化

业务精简和标准化分为下面几个方面:

  1. 全增隔离

目前全量和增量库存同步使用同一个队列名,通过字段判断是全量还是增量。
这样增加了代码的复杂度,而且原子性不好。
全量库存单独队列,与增量同步隔离。

  1. 剥离日志

修改库存以后需要记录详细变更日志,日志的实时性要求不高,将改操作剥离为单独的队列进行处理。

  1. 剥离新建

目前同步库存之前先判断该商品是否存在,如果存在再判断该商品在库存表是否有记录,如果没有则新建记录,有则更新库存。

由于随着数据量的增加,新建的记录(每天1k到3k之间)所占的比重越来越小,因此将新建的操作也单独剥离为一个队列进行处理。

优化消息处理的逻辑

平台为分布式系统,消息处理需要从注册中心调用远程Dubbo服务,首先将数据处理移动到Dubbo服务中完成,避免了频繁调用Dubbo服务,另外使用多线程处理消息,最大限度利用多核心的优势。

关于线程池的使用,可以参考这篇文章:使用ThreadPoolExecutor构造线程池

//构造线程池
private static ExecutorService executorService = new ThreadPoolExecutor(
16,
32,
10L,
TimeUnit.MINUTES,
new LinkedBlockingQueue<Runnable>(
                2048),new ThreadFactoryBuilder()
                     .setNameFormat("BatchSyncFullInventory-Pool-%d").build(),
                     new ThreadPoolExecutor.CallerRunsPolicy());

经过上面的优化,目前处理的时间有了大幅度降低:

InventoryDataAmount

队列操作高性能

经过上面的优化,发现每处理2k条消息,处理时间在1s以内,但出队时间接近15s。

因此,下面的优化重点是提高队列的操作性能。

由于Redis频繁的操作,会造成RTT(网络时延)不断延长,可以使用管道来降低RTT。

下面是Spring Data Redis使用管道的方式:

//从队列中循环取出消息, 使用管道, 减少网络传输时间
List<Object> msgList = redisTemplate.executePipelined(new RedisCallback<Object>() {
    @Override
    public Object doInRedis(RedisConnection connection) throws DataAccessException {
        for (int i = 0; i < batchSize; i++) {
            connection.rPop(getQuenueName().getBytes());
        }
        return null;
    }
});

理论上是这样的,需要有实际的数据支撑,因此需要通过做实验来验证方案的效果。

首先,在测试环境对比了三种不同的出队方式的性能,分别是单线程循环出队、多线程循环出队和单线程管道出队。

测试发现使用管道出队两千次,只需要70毫秒左右。

image

最终,使用了 管道+多线程,库存消息的处理时间降到了30分钟左右:


InventoryDataAmount.png

关于管道的使用,可以参考这篇文章:Redis管道技术

CPU使用过高

虽然发布到生产以后,处理时间有了大幅度降低,但是经过监控发现,Redis的CPU使用率一直居高不下。

image

对于监听队列的场景,一个简单的做法是当发现队列返回的内容为空的时候,就让线程休眠几秒钟,等队列中累积了一定量数据以后再通过管道去取,这样就既能享受管道带来的高性能,又避免了CPU使用率过高的风险。

//如果消息的内容为空, 则休眠[10]秒钟以后再继续取数据,防止大批量地读取redis造成CPU消耗过高
if (CollectionUtils.isEmpty(messageList)) {
    Thread.currentThread().sleep(10 * 1000);
    continue;
}

总结

  • 方案设计:头脑风暴与可行性评估
  • 逻辑精简化 : 剥离不必要的操作
  • 流程标准化 : 梳理统一业务的流程
  • 线程池实现高性能并发 : Executor Service
  • 管道实现高性能队列 : Redis Pipelining

作为一个工程师,要知道自己能力的边界在哪里,利用有限的资源让方案落地。

这里优化的经历,是想让大家对电商相关的业务有所了解,另外对处理问题的解决思路有所借鉴。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容