ClickHouse(11)ClickHouse合并树MergeTree家族表引擎之SummingMergeTree详细解析

SummingMergeTree引擎继承自MergeTree。区别在于,当合并SummingMergeTree表的数据片段时,ClickHouse会把所有具有相同主键的行合并为一行,该行包含了被合并的行中具有数值数据类型的列的汇总值。如果主键的组合方式使得单个键值对应于大量的行,则可以显著的减少存储空间并加快数据查询的速度。

一般SummingMergeTree和MergeTree一起使用。例如,在准备做报告的时候,将完整的数据存储在MergeTree表中,并且使用SummingMergeTree来存储聚合数据。这种方法可以避免因为使用不正确的主键组合方式而丢失有价值的数据。

建表语法

CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
    name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
    name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
    ...
) ENGINE = SummingMergeTree([columns])
[PARTITION BY expr]
[ORDER BY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]

创建SummingMergeTree表的参数中,与MergeTree不同的是[columns]。columns包含了将要被汇总的列的列名的元组。属于可选参数。所选的列必须是数值类型,并且不可位于主键中。

如果没有指定columns,ClickHouse会把所有不在主键中的数值类型的列都进行汇总。

其他的参数与MergeTree表是一致。

MergeTree表引擎的解析可以参考ClickHouse(09)ClickHouse合并树MergeTree家族表引擎之MergeTree详细解析

-- 建表
CREATE TABLE summtt
(
    key UInt32,
    value UInt32
)
ENGINE = SummingMergeTree()
ORDER BY key;

-- 插入数据
INSERT INTO summtt Values(1,1),(1,2),(2,1);

-- 查询数据
-- ClickHouse可能不会完整的汇总所有行,因此在查询中使用了聚合函数sum和GROUP BY子句。
-- ClickHouse定期合并插入的数据片段,并在这个时候对所有具有相同主键的行中的列进行汇总,将这些行替换为包含汇总数据的一行记录。
SELECT key, sum(value) FROM summtt GROUP BY key;

-- 查询结果
┌─key─┬─sum(value)─┐
│   2 │          1 │
│   1 │          3 │
└─────┴────────────┘

数据处理

当数据被插入到表中时,他们将被原样保存。ClickHouse定期合并插入的数据片段,并在这个时候对所有具有相同主键的行中的列进行汇总,将这些行替换为包含汇总数据的一行记录。

ClickHouse会按片段合并数据,以至于不同的数据片段中会包含具有相同主键的行,即单个汇总片段将会是不完整的。因此,聚合函数sum()和GROUP BY子句应该在(SELECT)查询语句中被使用,如上面的例子。

汇总的通用规则

  • 列中数值类型的值会被汇总,进行sum操作。这些列的集合在参数columns中被定义。
  • 如果用于汇总的所有列中的值均为0,则该行会被删除。
  • 如果列不在主键中且无法被汇总,则会在现有的值中任选一个。
  • 主键所在的列中的值不会被汇总。

AggregateFunction 列中的汇总

对于AggregateFunction类型的列,ClickHouse根据对应函数表现为AggregatingMergeTree引擎的聚合。

嵌套结构数据的处理

表中可以具有以特殊方式处理的嵌套数据结构。

如果嵌套表的名称以 Map 结尾,并且包含至少两个符合以下条件的列:

  • 第一列是数值类型(Int,Date,DateTime),称之为key,
  • 其他的列是可计算的(Int,Float32/64),称之为(values...),

然后这个嵌套表会被解释为一个key=>(values...)的映射,当合并它们的行时,两个数据集中的元素会被根据key合并为相应的(values...)的汇总值。如下面的例子。

[(1, 100)] + [(2, 150)] -> [(1, 100), (2, 150)]
[(1, 100)] + [(1, 150)] -> [(1, 250)]
[(1, 100)] + [(1, 150), (2, 150)] -> [(1, 250), (2, 150)]
[(1, 100), (2, 150)] + [(1, -100)] -> [(2, 150)]

请求数据时,使用sumMap(key,value)函数来对Map进行聚合。对于嵌套数据结构,你无需在列的元组中指定列以进行汇总。

资料分享

ClickHouse经典中文文档分享

参考文章

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 227,428评论 6 531
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 98,024评论 3 413
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 175,285评论 0 373
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 62,548评论 1 307
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 71,328评论 6 404
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 54,878评论 1 321
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,971评论 3 439
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,098评论 0 286
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 48,616评论 1 331
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,554评论 3 354
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 42,725评论 1 369
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,243评论 5 355
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,971评论 3 345
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,361评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 35,613评论 1 280
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 51,339评论 3 390
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 47,695评论 2 370

推荐阅读更多精彩内容