题目
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
-
示例1:
输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')
-
示例2:
输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')
解答
-
思路:
使用动态规划;
定义状态:
dp[i][j]
=> word1前i个字符构成的子串与word2前j个字符构成的子串的编辑距离;base case =>
dp[i][0]
= i,dp[0][j]
= j => 表示其中一个子串为空的情形;-
状态转移方程:
可以参考 => https://labuladong.gitbook.io/algo/dong-tai-gui-hua-xi-lie/bian-ji-ju-li
-
代码:
def minDistance(self, word1, word2): """ :type word1: str :type word2: str :rtype int (knowledge) 思路: 其实总共有四种操作,插入、删除、替换和什么都不操作 1. 使用动态规划; 2. 定义状态:dp[i][j] => word1前i个字符构成的子串与word2前j个字符构成的子串的编辑距离; 3. base case => dp[i][0] = i, dp[0][j] = j => 表示其中一个子串为空的情形 4. 状态转移方程: f(i, j) = j i == 0 i j == 0 f(i - 1, j - 1) i > 0 && j > 0 && word1[i] == word2[j] min { i > 0 && j > 0 && word1[i] != word2[j] f(i - 1, j) + 1, f(i, j - 1) + 1, f(i - 1, j - 1) + 1 } tip: 可以参考 => https://labuladong.gitbook.io/algo/dong-tai-gui-hua-xi-lie/bian-ji-ju-li """ m, n = len(word1), len(word2) dp = [[0] * (n + 1) for i in range(m + 1)] for i in range(1, m + 1): dp[i][0] = i for j in range(1, n + 1): dp[0][j] = j for i in range(1, m + 1): for j in range(1, n + 1): if word1[i - 1] == word2[j - 1]: dp[i][j] = dp[i - 1][j - 1] else: dp[i][j] = min( dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + 1 ) return dp[-1][-1]
测试验证
class Solution:
def minDistance(self, word1, word2):
"""
:type word1: str
:type word2: str
:rtype int
(knowledge)
思路:
其实总共有四种操作,插入、删除、替换和什么都不操作
1. 使用动态规划;
2. 定义状态:dp[i][j] => word1前i个字符构成的子串与word2前j个字符构成的子串的编辑距离;
3. base case => dp[i][0] = i, dp[0][j] = j => 表示其中一个子串为空的情形
4. 状态转移方程:
f(i, j) = j i == 0
i j == 0
f(i - 1, j - 1) i > 0 && j > 0 && word1[i] == word2[j]
min { i > 0 && j > 0 && word1[i] != word2[j]
f(i - 1, j) + 1,
f(i, j - 1) + 1,
f(i - 1, j - 1) + 1
}
tip: 可以参考 => https://labuladong.gitbook.io/algo/dong-tai-gui-hua-xi-lie/bian-ji-ju-li
"""
m, n = len(word1), len(word2)
dp = [[0] * (n + 1) for i in range(m + 1)]
for i in range(1, m + 1):
dp[i][0] = i
for j in range(1, n + 1):
dp[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(
dp[i - 1][j] + 1,
dp[i][j - 1] + 1,
dp[i - 1][j - 1] + 1
)
return dp[-1][-1]
if __name__ == '__main__':
solution = Solution()
print(solution.minDistance("horse", "ros"), "= 3")
print(solution.minDistance("intention", "execution"), "= 5")