如何利用秒级监控进行mongodb故障排查

摘要: 在我们平时的数据库使用当中,监控系统,作为排查故障,告警故障的重要辅助系统,对dba、运维、业务开发同学进行问题诊断、排查、分析有着重要的作用。并且一个监控系统的好坏,也很大程度上影响了能否精确的定位故障,以及是否能正确进行问题修复,避免下一次的故障。

在我们平时的数据库使用当中,监控系统,作为排查故障,告警故障的重要辅助系统,对dba、运维、业务开发同学进行问题诊断、排查、分析有着重要的作用。并且一个监控系统的好坏,也很大程度上影响了能否精确的定位故障,以及是否能正确进行问题修复,避免下一次的故障。而监控粒度、监控指标完整性、监控实时性是评价一个监控的三个重要因素。

在监控粒度上,目前很多的系统都只能做到分钟级监控,或者半分钟级监控。这样一个监控粒度,在针对当前高速运转的软件环境下,能力已经越来越捉襟见肘。对于一些瞬间爆发的大量异常更是无能为力。而提升监控粒度,带来的成倍增长的大数据量以及成倍降低的采集频率,对于资源的消耗将会是极大的考验。

在监控指标完整性上,当前绝大部分的系统采用的是预定义指标进行采集的方式。这种方式有一个极大的弊端,就是,如果因为一开始没有意识到某个指标的重要性而漏采,但是恰恰却是某次故障的关键性指标,这个时候这个故障便极有可能变成“无头冤案”。

而在监控的实时性上——“没有人关心过去是好是坏,他们只在乎现在”。

以上三个能力,只要做好一个,就可以称得上是不错的监控系统了。而阿里云自研的秒级监控系统inspector已经可以做到1秒1点的真秒级粒度,全量指标采集、无一疏漏——甚至对曾经没有出现过的指标进行自动采集,实时数据展示。1秒1点的监控粒度,让数据库的任何抖动都无处遁形;全量指标采集,给予了dba足够全面完整的信息;而实时数据展示,能第一时间知道故障的发生,也能第一时间知道故障的恢复。

今天就针对mongodb数据库,来聊一聊当遇到db访问超时时,如果利用秒级监控系统

inspector进行故障排查:

case 1

之前有一个线上业务,用的是mongodb副本集,并且在业务端进行了读写分离。突然有一天,业务出现大量线上读流量超时,通过inspector可以明显看到当时从库的延迟异常飙高

从库延迟飙高,则说明从库oplog重放线程速度追不上主库写入速度,而在主从配置一致的情况下,如果从库的响应速度比不上主库,那只能说明从库当时除了正常的业务操作之外,还在进行一些高消耗的操作。

经过排查,我们发现当时db的cache出现了飙升:

从监控中可以明显的看到,cache usage迅速从80%左右升到95%的evict trigger线,并且与此同时,dirty cache也有所攀升,达到了dirty cache evict的trigger线。

对于wiredTiger引擎,当cache使用率达到trigger线后,wt认为evict线程来不及evict page,那么就会让用户线程加入evict操作,然后此时就会大量引起超时。而这个想法通过application evict time指标也可以加以印证:

通过上图我们可以清晰的看到,当时用户线程花费了大量时间去做evict,然后导致了正常访问请求的大量超时

然后经过业务端排查,是因为当时有大量的数据迁移job导致cache打满,所以在对迁移job进行限流并且增大cache之后,整个db运行也开始变的平稳。

case 2

某日线上一个使用sharding集群的业务突然又一波访问超时报错,然后短暂时间后又迅速恢复正常。通过经验判断,当时多半有一些锁操作,导致访问超时。

通过inspector,我们发现在故障发生时刻某个shard上锁队列很高:

所以基本印证了我们之前对于锁导致访问超时的猜想。那么究竟是什么操作导致了锁队列的飙升呢?

很快,通过对当时命令的排查,我们发现当时shard上的鉴权命令突然飙高:

而通过查看代码,我们发现,mongos到mongod虽然使用keyfile进行认证,但是实际也是通过sasl命令的scram协议来进行认证,而这个在认证的时候会有一个全局锁,所以当时瞬间大量的鉴权导致了全局锁队列飙升,然后导致访问超时

所以,最后我们通过改小客户端的连接数,来减少这种突然激增的鉴权产生全局锁导致超时。

通过以上两个case,我们能看到,足够小的监控粒度,足够全面的监控指标项,对于故障发生的问题排查有多么重要,而实时性,在监控墙场景下的作用也十分明显。

最后,秒级监控已经在阿里云mongodb控制台开放,云mongodb的用户可以自主进行监控开启,体验秒级监控带来的高清体验。

原文地址

阅读更多干货好文,请关注扫描以下二维码:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容