欧拉公式、复数与拉普拉斯变换

1、欧拉公式

e^x =\cos  x +i\sin x

e是自然对数的底,i是虚数单位。它将函数的定义域扩大到复数,建立了三角函数与指数函数的关系

欧拉公式的证明:利用了无穷级数

(准确来说是麦克劳林级数(即泰勒级数在x=0处的展开),泰勒级数的证明可参考资料【1】,用了归纳法加上余项的极限来证明,此处简单的复习一下微积分的知识)

(这里再插入一下,一个函数可以多项式展开,可以三角函数展开,那么是不是也可以指数函数展开,那么这些展开函数作为基底函数,基底函数是有要求的吗?小波变换是不是就是选择不同的基底展开,从而跳出了短时傅里叶变换的束缚?)

e^x 的展开式中,白x换成\pm ix

特别的,当x = pi 时,有

它把5个最基本的数学常数简洁地连系起来,非常的简洁、美妙。


2、复数的基本概念

复数最直观的理解就是旋转.

更重要的意义在于复数运算保留了二维信息【2】。

【与(x,y)表示不同的是,x,y仍然是基于同一个度量的,x,y值的区别是通过给它们的单位不同来赋予的

如果直接让值就能够表征不同的维度,就是虚数的一种表现了】

假如我让你计算3+5,虽然你可以轻松的计算出8,但是如果让你分解8你会有无数种分解的方法,3和5原始在各自维度上的信息被覆盖了。

但是计算3+5i的话,你依然可以分解出实部和虚部,就像上图那样。

基于以上两个理由,用复数来描述电场与磁场简直完美到爆棚!

我们即可以让电场强度与复数磁场强度相加而不损失各自的信息,又满足了电场与磁场90度垂直的要求。另外,一旦我们需要让任何一个场旋转90度,只要乘一个“i”就可以了.【2】

当然,更深入一些的解释是【3】:

引入复数的一个很"物理"的原因是因为对称性。复数本身可以看成R上的2维线性空间,在复数乘法下自然构成了一个同构于SO(2)的群. 

描述对称性的对称群在复数的代数结构上表示比较方便. 所以, 复数域这个代数结构(它的对称性)在物理表示中得到了应用。

其实, 还真的有引入比复数域更复杂的代数结构来研究比SO(2)更复杂的对称性问题的例子, 比如著名的四元数, 可以用来研究三维旋转问题(SO(3)群的表示).但是, 这些比复数域更复杂的代数结构一般来说其性质远没有复数域那么好, 比如四元数虽然是个除环, 但是不是域, 乘法不可交换.

这就说明了为什么物理中要引入复数域, 并且"止步"于复数域. 复数域上一些基本的对称群有自然的表示, 并且复数域的代数性质和分析性质都非常非常好, 所以物理学很自然地需要这个代数结构.

(原文的公式推导部分我看的也很懵,不过整体意思还是看懂了,关键词:对称性,代数结构。应该和描述对称性的群有关系,还有数域的概念)

复变函数直观示意图

(#Todo:这张图与拉普拉斯变换里的f(t),F(s)有关系吗?)


3、从信号处理的角度理解拉普拉斯变换

1)从傅里叶变换说起

傅里叶变换能帮我们解决很多问题,一经问世后便受到广大工程师们的喜爱,因为它给人们提供了一扇不同的窗户来观察世界,从这个窗户来看,很多事情往往变得简单多了。但是,别忘了,傅里叶变换有一个很大局限性,那就是信号必须满足狄利赫里条件才行

狄利赫里条件为:

2)拉普拉斯变换的提出

傅里叶变换的严格条件,特别是那个绝对可积的条件,一下子就拦截掉了一大批函数。比如函数 f = t^2 就无法进行傅里叶变换。这点难度当然拿不到聪明的数学家们,他们想到了一个绝佳的主意:把不满足绝对的可积的函数乘以一个快速衰减的函数,这样在趋于 ∞ 时原函数也衰减到零了,从而满足绝对可积。

拉普拉斯变换

3)从几何图形上直观的表现

螺旋曲线


螺旋曲线和衰减函数的乘积:一个半径不断减小的螺旋曲线。从不同的平面看,就是不断衰减的正弦或者余弦曲线,从复平面来看,是一个半径不断减小的圆。

总结一下:总结一下:傅里叶变换是将函数分解到频率不同、幅值恒为1的单位圆上;拉普拉斯变换是将函数分解到频率幅值都在变化的圆上。因为拉普拉斯变换的基有两个变量,因此更灵活,适用范围更广。

4、从数学投影角度来解释拉普拉斯变换

1)拉普拉斯变换的函数理解

原因如下:

{e^jw}表示复空间的正交基,这个还有点疑惑


这里解释了为什么使用拉普拉斯的变换形式会方便运算

2)拉普拉斯变换的具体计算

常用计算可以查表~



参考资料

【1】https://blog.csdn.net/weixin_40100502/article/details/80531027    泰勒公式的详细推导

【2】https://www.zhihu.com/question/23234701    复数的物理意义是什么? Heinrich的回答

【3】https://www.zhihu.com/question/23234701    复数的物理意义是什么? Octolet的回答(进阶版,从对称性角度考虑)

【4】https://zhuanlan.zhihu.com/p/40783304    从另一个角度看拉普拉斯变换

【5】https://zhuanlan.zhihu.com/p/23617272    【自动控制原理】1.传递函数

【6】https://wenku.baidu.com/view/6c522e81360cba1aa811da7d.html?from=search    复变函数-laplace变换(具体的简单的函数计算推导)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,340评论 5 467
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,762评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,329评论 0 329
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,678评论 1 270
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,583评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,995评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,493评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,145评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,293评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,250评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,267评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,973评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,556评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,648评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,873评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,257评论 2 345
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,809评论 2 339

推荐阅读更多精彩内容