在工程中引用spark-streaming-kafka-0-10_2.11
来使用它。通过包中提供的KafkaUtils
可以在StreamingContext
和JavaStreamingContext
中对Kafka消息创建DStream
。
由于KafkaUtils
可以订阅多个topic,因此创建的DStream由成对的topic和消息组成。具体操作如下:
-
导入依赖
"org.apache.spark" %% "spark-streaming-kafka-0-10" % "2.0.0"
-
实现Wordcount
import org.apache.kafka.common.serialization.StringDeserializer import org.apache.spark.SparkConf import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies} import org.apache.spark.streaming.{Seconds, StreamingContext} object KafkaDemo { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local[4]").setAppName("KafkaDemo") val streamingContext = new StreamingContext(conf, Seconds(5)) // Kafka参数 val kafkaParams = Map[String, Object]( "bootstrap.servers" -> "localhost:9092", "key.deserializer" -> classOf[StringDeserializer], "value.deserializer" -> classOf[StringDeserializer], "group.id" -> "use_a_separate_group_id_for_each_stream", "auto.offset.reset" -> "latest", "enable.auto.commit" -> (false: java.lang.Boolean) ) // topic列表 val topics = Array("test") /* 创建DStream 需要的参数如下: 1. StreamingContext或JavaStreamingContext 2. LocationStrategy 位置策略,有三个实现:LocationStrategies.PreferBrokers(如果Broker节点同样是Executor节点,任务首选Broker节点), LocationStrategies.PreferConsistent(任务分布到所有可获得的Executor上),LocationStrategies.PreferFixed(数据倾斜是选择,自定义分布) 3. ConsumerStrategy 消费策略,有两个实现:ConsumerStrategies.Subscribe(订阅模式),ConsumerStrategies.Assign(分配模式) 4. PerPartitionConfig 可选,分区配置:可以设置分区读取速率,其实现类DefaultPerPartitionConfig,通过制定参数spark.streaming.kafka.maxRatePerPartition设置速率,默认为0 */ val kafkaDStream = KafkaUtils.createDirectStream[String, String]( streamingContext, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](topics, kafkaParams) ) val flatMapDStream = kafkaDStream.flatMap(_.key().split(" ")) val mapDStream = flatMapDStream.map((_, 1)) val reduceByKeyDStream = mapDStream.reduceByKey(_ + _) reduceByKeyDStream.print() streamingContext.start() streamingContext.awaitTermination() } }