Spark读写HBase表数据

一、Maven依赖

<repositories>
        <!-- spark on hbase是cloudera提供的,所以这个地方添加了cdh仓库地址 -->
        <repository>
            <id>cloudera</id>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos</url>
        </repository>
</repositories>
<dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.3.3</version>
        </dependency>
        <dependency>
            <groupId>org.apache.commons</groupId>
            <artifactId>commons-lang3</artifactId>
            <version>3.7</version>
        <!-- https://mvnrepository.com/artifact/org.apache.hbase/hbase-spark -->
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-spark</artifactId>
            <version>2.1.0-cdh6.2.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>2.3.3</version>
        </dependency>
</dependencies>

二、Spark代码


import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.hbase.client.{Put, Result, Scan}
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}
import org.apache.hadoop.hbase.mapreduce.{TableInputFormat, TableOutputFormat}
import org.apache.hadoop.hbase.spark.HBaseContext
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapreduce.Job
import org.apache.spark.rdd.RDD


object SparkOnHBase {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("sparkOnHBase").setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    //创建HBase的环境变量参数
    val hbaseConf: Configuration = HBaseConfiguration.create()
    hbaseConf.set("hbase.zookeeper.quorum","node01,node02,node03")
    hbaseConf.set("hbase.zookeeper.property.clientPort","2181")
    hbaseConf.set(TableInputFormat.INPUT_TABLE,"spark_hbase")

    val hbaseContext: HBaseContext = new HBaseContext(sc, hbaseConf)

    val scan: Scan = new Scan()

    val hbaseRDD: RDD[(ImmutableBytesWritable, Result)] = hbaseContext.hbaseRDD(TableName.valueOf("spark_hbase"), scan)

    hbaseRDD.map(eachResult => {
      //      val rowkey1: String = Bytes.toString(eachResult._1.get())
      val result: Result = eachResult._2
      val rowKey: String = Bytes.toString(result.getRow)

      val name: String = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name")))
      val age: String = Bytes.toString(result.getValue(Bytes.toBytes("info"), Bytes.toBytes("age")))
      //      println(rowKey+":"+name+":"+age)
      rowKey + ":" + name + ":" + age
    }).foreach(println)

    //向HBase写数据,提前创建HBase表:create 'spark_hbase_out','info'
    hbaseConf.set(TableOutputFormat.OUTPUT_TABLE,"spark_hbase_out")
    //通过job来设置输出的格式的类
    val job = Job.getInstance(hbaseConf)
    job.setOutputKeyClass(classOf[ImmutableBytesWritable])
    job.setOutputValueClass(classOf[Result])
    job.setOutputFormatClass(classOf[TableOutputFormat[ImmutableBytesWritable]])

    val initialRDD: RDD[(String, String, String)] = sc.parallelize(List(("100", "apple", "11"), ("200", "banana", "12"), ("300", "pear", "13")))

    val hbaseRDD2: RDD[(ImmutableBytesWritable, Put)] = initialRDD.map(x => {
      val put: Put = new Put(Bytes.toBytes(x._1))
      put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("name"), Bytes.toBytes(x._2))
      put.addColumn(Bytes.toBytes("info"), Bytes.toBytes("age"), Bytes.toBytes(x._3))
      (new ImmutableBytesWritable(), put)
    })

    hbaseRDD2.saveAsNewAPIHadoopDataset(job.getConfiguration)

    sc.stop()

  }

}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,639评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,277评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,221评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,474评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,570评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,816评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,957评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,718评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,176评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,511评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,646评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,322评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,934评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,755评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,987评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,358评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,514评论 2 348

推荐阅读更多精彩内容