前面我介绍了可视化的一些方法以及机器学习在预测方面的应用,分为分类问题(预测值是离散型)和回归问题(预测值是连续型)(具体见之前的文章)。
从本期开始,我将做一个关于图像识别的系列文章,让读者慢慢理解python进行图像识别的过程、原理和方法,每一篇文章从实现功能、实现代码、实现效果三个方面进行展示。
实现功能:
卷积神经网络CNN模型图像二分类预测结果评价
实现代码:
import os
from PILimport Image
import numpyas np
import matplotlib.pyplotas plt
import tensorflowas tf
from tensorflow.kerasimport datasets, layers, models
from collectionsimport Counter
from sklearn.metricsimport precision_recall_curve
from sklearn.metricsimport roc_curve, auc
from sklearn.metricsimport roc_auc_score
import itertools
from pylabimport mpl
import seabornas sns
class Solution():
#==================读取图片=================================
def read_image(self,paths):
os.listdir(paths)
filelist = []
for root, dirs, filesin os.walk(paths):
for filein files:
if os.path.splitext(file)[1] ==".png":
filelist.append(os.path.join(root, file))
print(filelist)
return filelist
#==================图片数据转化为数组==========================
def im_array(self,paths):
M=[]
for filenamein paths:
im=Image.open(filename)
im_L=im.convert("L")#模式L
Core=im_L.getdata()
arr1=np.array(Core,dtype='float32')/255.0
list_img=arr1.tolist()
M.extend(list_img)
return M
def CNN_model(self,train_images, train_lables):
# ============构建卷积神经网络并保存=========================
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)))# 过滤器个数,卷积核尺寸,激活函数,输入形状
model.add(layers.MaxPooling2D((2, 2)))# 池化层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())# 降维
model.add(layers.Dense(64, activation='relu'))# 全连接层
model.add(layers.Dense(2, activation='softmax'))# 注意这里参数,我只有两类图片,所以是2.
model.summary()# 显示模型的架构
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
return model
if __name__=='__main__':
Object1=Solution()
# =================数据读取===============
path1="D:\DCTDV2\dataset\\train\\"
test1 ="D:\DCTDV2\dataset\\test\\"
pathDir = os.listdir(path1)
print(pathDir)
pathDir=pathDir[1:5]
print(pathDir)
for ain pathDir:
path2=path1+a
test2=test1+a
filelist_1=Object1.read_image(path1+"Norm")
filelist_2=Object1.read_image(path2)
filelist_all=filelist_1+filelist_2
M=Object1.im_array(filelist_all)
train_images=np.array(M).reshape(len(filelist_all),128,128)#输出验证一下(400, 128, 128)
label=[0]*len(filelist_1)+[1]*len(filelist_2)
train_lables=np.array(label)#数据标签
train_images = train_images[..., np.newaxis]#数据图片
print(train_images.shape)#输出验证一下(400, 128, 128, 1)
print(train_lables.shape)
# ===================准备测试数据==================
filelist_1T = Object1.read_image(test1+"Norm")
filelist_2T = Object1.read_image(test2)
filelist_allT = filelist_1T + filelist_2T
print(filelist_allT)
N = Object1.im_array(filelist_allT)
dict_label = {0:'norm', 1:'IgaK'}
test_images = np.array(N).reshape(len(filelist_allT), 128, 128)
label = [0] *len(filelist_1T) + [1] *len(filelist_2T)
test_lables = np.array(label)# 数据标签
test_images = test_images[..., np.newaxis]# 数据图片
print(test_images.shape)# 输出验证一下(100, 128, 128, 1)
print(test_lables.shape)
# #===================训练模型=============
model=Object1.CNN_model(train_images, train_lables)
CnnModel=model.fit(train_images, train_lables, epochs=20)
# model.save('D:\电池条带V2\model\my_model.h5') # 保存为h5模型
# tf.keras.models.save_model(model,"F:\python\moxing\model")#这样是pb模型
print("模型保存成功!")
# history列表
print(CnnModel.history.keys())
font = {'family':'Times New Roman','size':12,}
sns.set(font_scale=1.2)
plt.plot(CnnModel.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.savefig('D:\\DCTDV2\\result\\V1\\loss' +"\\" +'%s.tif' % a,bbox_inches='tight',dpi=600)
plt.show()
plt.plot(CnnModel.history['accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.savefig('D:\\DCTDV2\\result\\V1\\accuracy' +"\\" +'%s.tif' % a,bbox_inches='tight',dpi=600)
plt.show()
# #===================预测图像=============
predict_label=[]
prob_label=[]
for iin test_images:
i=np.array([i])
predictions_single=model.predict(i)
print(np.argmax(predictions_single))
out_c_1 = np.array(predictions_single)[:, 1]
prob_label.extend(out_c_1)
predict_label.append(np.argmax(predictions_single))
print(prob_label)
print(predict_label)
print(list(test_lables))
count = Counter(predict_label)
print(count)
TP = FP = FN = TN =0
for iin range(len(predict_label)):
if predict_label[i]==1:
if list(test_lables)[i]==1:
TP=TP+1
elif list(test_lables)[i]==0:
FP=FP+1
elif predict_label[i]==0:
if list(test_lables)[i]==1:
FN=FN+1
elif list(test_lables)[i]==0:
TN=TN+1
print(TP,FP,FN,TN)
deathc_recall=TP/(TP+FN)
savec_recall=TN/(FP+TN)
print(deathc_recall)
print(savec_recall)
print("--------------------")
cm = np.arange(4).reshape(2, 2)
cm[0, 0] = TN
cm[0, 1] = FP
cm[1, 0] = FN
cm[1, 1] = TP
classes = [0, 1]
plt.figure()
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion matrix')
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=0)
plt.yticks(tick_marks, classes)
thresh = cm.max() /2.
for i, jin itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j], horizontalalignment="center", color="red" if cm[i, j] > threshelse "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.savefig('D:\\DCTDV2\\result\\V1\\cm' +"\\" +'%s.tif' % a,bbox_inches='tight',dpi=600)
plt.show()
fpr, tpr, thresholds = roc_curve(list(test_lables), prob_label, pos_label=1)
Auc_score = roc_auc_score(list(test_lables), predict_label)
Auc = auc(fpr, tpr)
print(Auc_score, Auc)
plt.plot(fpr, tpr, 'b', label='AUC = %0.2f' % Auc)# 生成ROC曲线
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True positive rate')
plt.xlabel('False positive rate')
plt.savefig('D:\\DCTDV2\\result\\V1\\roc' +"\\" +'%s.tif' % a,bbox_inches='tight',dpi=600)
plt.show()
plt.figure()
precision, recall, thresholds = precision_recall_curve(list(test_lables), predict_label)
plt.title('Precision/Recall Curve')# give plot a title
plt.xlabel('Recall')# make axis labels
plt.ylabel('Precision')
plt.plot(precision, recall)
plt.savefig('D:\\DCTDV2\\result\\V1\\pr' +"\\" +'%s.tif' % a,bbox_inches='tight',dpi=600)
plt.show()
实现效果:
由于数据为非公开数据,仅展示几个图像的效果,有问题可以后台联系我。
本人读研期间发表5篇SCI数据挖掘相关论文,现在在某研究院从事数据挖掘相关工作,对数据挖掘有一定的认知和理解,会不定期分享一些关于python机器学习、深度学习、数据挖掘基础知识与案例。 致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。 关注V订阅号:数据杂坛可在后台联系我获取相关数据集和源码,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。