实验记录12: scanpy轨迹分析的大型翻车现场

3月29日 天气晴 心情雷暴

Preprosessing the data

import numpy as np
import pandas as pd
import matplotlib.pyplot as pl
from matplotlib import rcParams
import scanpy as sc

sc.settings.verbosity = 3  # verbosity: errors (0), warnings (1), info (2), hints (3)
sc.logging.print_versions()
scanpy==1.4 anndata==0.6.19 numpy==1.14.5 scipy==1.1.0 pandas==0.23.4 scikit-learn==0.19.2 statsmodels==0.9.0 python-igraph==0.7.1 louvain==0.6.1 
adata = sc.read_h5ad("/bone_marrow/scanpy/3_29_PC16_filterMore/umap_tsne_3_29.h5ad")
sc.tl.draw_graph(adata)
drawing single-cell graph using layout "fa"
    finished (1:06:05.80) --> added
    'X_draw_graph_fa', graph_drawing coordinates (adata.obsm)
sc.pl.draw_graph(adata, color='louvain', legend_loc='on data',title = "")
output_4_0.png

Denoising the graph(will skip it next time!)

sc.tl.diffmap(adata)
sc.pp.neighbors(adata, n_neighbors=10, use_rep='X_diffmap')
computing Diffusion Maps using n_comps=15(=n_dcs)
    eigenvalues of transition matrix
    [1.         0.99998933 0.9999825  0.9999806  0.9999773  0.99997413
     0.99997026 0.999969   0.99996084 0.9999516  0.9999409  0.9999385
     0.9999321  0.99992156 0.9999118 ]
    finished (0:11:57.51) --> added
    'X_diffmap', diffmap coordinates (adata.obsm)
    'diffmap_evals', eigenvalues of transition matrix (adata.uns)
computing neighbors
    finished (0:01:30.84) --> added to `.uns['neighbors']`
    'distances', distances for each pair of neighbors
    'connectivities', weighted adjacency matrix
sc.tl.draw_graph(adata)
drawing single-cell graph using layout "fa"
    finished (1:05:24.51) --> added
    'X_draw_graph_fa', graph_drawing coordinates (adata.obsm)
sc.pl.draw_graph(adata, color='louvain', legend_loc='on data',title = "")
output_8_0.png

..didn't see any denoising effect

PAGA

Annotate the clusters using marker genes.

sc.tl.paga(adata, groups='louvain')
running PAGA
    finished (0:00:13.69) --> added
    'paga/connectivities', connectivities adjacency (adata.uns)
    'paga/connectivities_tree', connectivities subtree (adata.uns)
sc.pl.paga(adata, color=['louvain'],title = "")
--> added 'pos', the PAGA positions (adata.uns['paga'])
output_13_1.png
sc.pl.paga(adata, color=['CD34', 'GYPB', 'MS4A1', 'IL7R'])
--> added 'pos', the PAGA positions (adata.uns['paga'])
output_14_1.png

Annote groups with cell type

adata.obs['louvain'].cat.categories
Index(['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12',
       '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23'],
      dtype='object')
adata.obs['louvain_anno'] = adata.obs['louvain']
# annote them with names
adata.obs['louvain_anno'].cat.categories = ['0/T', '1/B', '2', '3/T', '4/MDDC', '5', '6/MDDC', '7/NK', '8/MDDC', '9/CD8+T', '10/NK', '11/B', '12/NRBC',
       '13', '14/CD1C-CD141-DC', '15/pDC', '16/Macro,DC', '17/pDC', '18/DC', '19/transB,Plasmab', '20','21','22/B,NK','23']
Cluster Cell Type Marker Gene
0 T cell/IL-17Ralpha T cell IL7R, CD3E, CD3D
1 B cell MS4A1, CD79A
2 高表达核糖体蛋白基因
3 CD8+ T cell, T helper, angiogenic T cell CD3E, CXCR4, CD3D, CCL5, GZMK
4 Monocyte derived dendritic cell S100A8, S100A9
5 高表达核糖体蛋白基因
6 Monocyte derived dendritic cell S100A8, S100A9
7 NK cell PRF1, NKG7, KLRB1, KLRD1
8 Monocyte derived dendritic cell S100A8, S100A9
9 CD8+ T cell GZMK, CD3D, CD8A, NKG7 *
10 NK Cell GNLY, NKG7, PTPRC
11 B cell CD24, CD79A, CD37, CD79B
12 Red blood cell(Erythrocyte) HBB, HBA1,GYPA
13 not known
14 CD1C-CD141- dendritic cell FCGR3A, CST3
15 Plasmacytiod dendritic cell HSP90B1, SSR4, PDIA4, SEC11C, MZB1, UBE2J1, FKBP2, DERL3, HERPUD1, ITM2C
16 Macrophage/ dendritic cell LYZ, HLA-DQA1, AIF1, CD74, FCER1A, CST3
17 Plasmacytiod dendritic cell IRF8, TCF4, LILRA4 *
18 Megakaryocyte progenitor cell/Megakaryocyte PF4, PPBP, / GP9
19 transitional B cell / Plasmablast CD24, CD79B
20 not known
21 B cell MS4A1, CD79A, CD37, CD74
22 B cell , NK cell CD74,CD79A, NKG7, GZMH
23 not known

上面这个大家看看就好,我自己也不确定,请自行翻阅文献!!!

sc.tl.paga(adata, groups='louvain_anno')
running PAGA
    finished (0:00:13.55) --> added
    'paga/connectivities', connectivities adjacency (adata.uns)
    'paga/connectivities_tree', connectivities subtree (adata.uns)
sc.pl.paga(adata, threshold=0.03)
--> added 'pos', the PAGA positions (adata.uns['paga'])
output_21_1.png
adata
AnnData object with n_obs × n_vars = 315509 × 1314 
    obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain', 'louvain_anno'
    var: 'gene_ids', 'n_cells', 'highly_variable', 'means', 'dispersions', 'dispersions_norm'
    uns: 'louvain', 'louvain_colors', 'neighbors', 'pca', 'draw_graph', 'diffmap_evals', 'paga', 'louvain_sizes', 'louvain_anno_sizes', 'louvain_anno_colors'
    obsm: 'X_pca', 'X_umap', 'X_tsne', 'X_draw_graph_fa', 'X_diffmap'
    varm: 'PCs'
sc.tl.draw_graph(adata, init_pos='paga')
drawing single-cell graph using layout "fa"
    finished (1:03:55.77) --> added
    'X_draw_graph_fa', graph_drawing coordinates (adata.obsm)

Add pesudotime parameters

# the most primitive cell is refered as 0 persudotime.
# Group 13 is the nearest cell population to Hematopoietic stem cell.

adata.uns['iroot'] = np.flatnonzero(adata.obs['louvain_anno']  == '13')[0]
sc.tl.dpt(adata)
computing Diffusion Pseudotime using n_dcs=10
    finished (0:00:00.04) --> added
    'dpt_pseudotime', the pseudotime (adata.obs)
sc.pl.draw_graph(adata, color=['louvain_anno', 'dpt_pseudotime'],
                 legend_loc='right margin',title = ['','pseudotime'])
output_26_0.png
sc.pl.draw_graph(adata, color=['louvain_anno'],
                 legend_loc='right margin',title = ['']) #plot again to see full legends info
output_27_0.png

try other "iroot" setting

adata.uns['iroot'] = np.flatnonzero(adata.obs['louvain_anno']  == '5')[0]
sc.tl.dpt(adata)
sc.pl.draw_graph(adata, color=['louvain_anno', 'dpt_pseudotime'],
                 legend_loc='right margin',title = ['','pseudotime'])
computing Diffusion Pseudotime using n_dcs=10
    finished (0:00:00.04) --> added
    'dpt_pseudotime', the pseudotime (adata.obs)
output_29_1.png

Several other cell types are chosen to be "root" for diffusion pseudotime, however the pseudotime graphs look no big different.


..it doesn't look meaningful. didn't see any trajectory to describe cell development.

I think the "denoising graph" step is to blame. Will skip it next time.
Otherwise i should zoom it into a specific cell population, but have no idea which kind of cell i should choose...

Beautify the graphs

Choose the colors of the clusters a bit more consistently.

pl.figure(figsize=(8, 2))
for i in range(28):
    pl.scatter(i, 1, c=sc.pl.palettes.zeileis_26[i], s=200)
pl.show()
output_35_0.png
zeileis_colors = np.array(sc.pl.palettes.zeileis_26)
new_colors = np.array(adata.uns['louvain_anno_colors'])
new_colors[[13]] = zeileis_colors[[12]]  # Stem(?) colors / green
new_colors[[12]] = zeileis_colors[[5]]  # Ery colors / red
new_colors[[4,6,8,15,17]] = zeileis_colors[[17,17,17,16,16]]  # monocyte derived dendritic cell and pDC/ yellow
new_colors[[14,16,18]] = zeileis_colors[[16,16,16]]  # DC / yellow
new_colors[[0,3,9]] = zeileis_colors[[6,6,6]]  # T cell / light blue
new_colors[[7,10]] = zeileis_colors[[0,0]]  # NK cell / dark blue
new_colors[[1,11,22,19]] = zeileis_colors[[22,22,22,21]]  # B cell / pink
new_colors[[21,23,20]] = zeileis_colors[[25,25,25]]  # Not known / grey
new_colors[[2, 5]] = zeileis_colors[[25, 25]]  # outliers / grey
adata.uns['louvain_anno_colors'] = new_colors
adata
AnnData object with n_obs × n_vars = 315509 × 1314 
    obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain', 'louvain_anno', 'dpt_pseudotime'
    var: 'gene_ids', 'n_cells', 'highly_variable', 'means', 'dispersions', 'dispersions_norm'
    uns: 'louvain', 'louvain_colors', 'neighbors', 'pca', 'draw_graph', 'diffmap_evals', 'paga', 'louvain_sizes', 'louvain_anno_sizes', 'louvain_anno_colors', 'iroot'
    obsm: 'X_pca', 'X_umap', 'X_tsne', 'X_draw_graph_fa', 'X_diffmap'
    varm: 'PCs'
sc.pl.draw_graph(adata, color=['louvain_anno'],
                 legend_loc='right margin',title = [''])
output_40_0.png

this is a piece of shit.
screw it!!!!!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容