聚类(一):DBSCAN算法实现(r语言)

原文链接:聚类(一):DBSCAN算法实现(r语言)

微信公众号:机器学习养成记    搜索添加微信公众号:chenchenwings

DBSCAN(Density-BasedSpatial Clustering of Applications with Noise),一种基于密度的聚类方法,即找到被低密度区域分离的稠密区域,要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值。

Some points

一、两个参数。

1,距离参数(Eps)

2,邻域内点最少个数(MinPts)

二、根据基于中心的密度进行点分类。

密度的基于中心的方法使得点分为三类:

1,核心点。稠密区域内部的点。该点以Eps为半径的区域内点的个数不少于MinPts(包括自身)。

2,边界点。稠密区边缘上的点,不是核心点,但在某个或多个核心点邻域内。

3,噪声点。稀疏区域中的点,既非核心点也非边界点。

4,密度可达。如果点p在核心点q的Eps邻域内,则称p是从q出发可以直接密度可达。如果存在点链p1,p2, …, pn,p1=q,pn=p,pi+1是从pi直接密度可达,则称点p是从q关于r和M密度可达的,密度可达是单向的。

算法流程

从某点出发,将密度可达的点聚为一类,不断进行区域扩张,直至所有点都被访问。

R语言实现

在R中实现DBSCAN聚类,可以使用fpc包中的dbscan()函数。在下面的例子中,我们使用factoextra包中的数据集multishapes进行演示。

如下可查看聚类后的结果:

具体每个样本点的分类结果,可用db$cluster查看,其中0表示噪声点,如下随机显示50个点的分类结果:

选择最优的Eps值

方法为计算每个点到其最近邻的k个点的平均距离。k的取值根据MinPts由用户指定。R语言中,使用dbscan包中的kNNdistplot()函数进行计算。

由图可知,拐点处基本在0.15左右,因此可以认为最优Eps值在0.15左右。

自定义距离公式

dbscan()函数中计算距离公式为欧式距离,在一些特定的场合无法使用,比如要计算地图上两点的距离,就要应用特定的计算地图上两点的距离公式。

R里面的很多函数都是开源的,因此,直接运行fpc::dbscan可以看到此函数的原程序。我们用geosphere包中的distm()函数对原程序中的距离计算公式进行修改,实现地图上两点距离的计算。

将原程序中的distcomb函数改为如下形式:

将修改过的dbscan函数重新命名为disdbscan,重新将数据进行聚类:

DBSCAN优缺点

优点

(1)聚类速度快,且能够有效处理噪声点。

(2)能发现任意形状的空间聚类。

(3)聚类结果几乎不依赖于点遍历顺序。

(4)不需要输入要划分的聚类个数。

缺点

(1)当数据量增大时,要求较大的内存支持I/O消耗也很大;

(2)当空间聚类的密度不均匀、聚类间距差相差很大时,聚类质量较差。

聚类(三):KNN算法(R语言)

聚类(二):k-means算法(R&python)

微信公众号:机器学习养成记    搜索添加微信公众号:chenchenwings

扫描二维码,关注我们。

如需转载,请在开篇显著位置注明作者和出处,并在文末放置机器学习养成记二维码和添加原文链接。

快来关注我们吧!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 207,113评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,644评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,340评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,449评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,445评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,166评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,442评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,105评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,601评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,066评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,161评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,792评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,351评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,352评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,584评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,618评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,916评论 2 344

推荐阅读更多精彩内容