1. 原型聚类
原型聚类即“基于原型的聚类”(prototype-based clustering),原型表示模板的意思,就是通过参考一个模板向量或模板分布的方式来完成聚类的过程,常见的K-Means便是基于簇中心来实现聚类,混合高斯聚类则是基于簇分布来实现聚类。
1.2 kmeans
1.2.1 基本原理
K-means是一种常见的聚类算法,也叫k均值或k平均。通过迭代的方式,每次迭代都将数据集中的各个点划分到距离它最近的簇内,这里的距离即数据点到簇中心的距离。
kmean步骤:
- 随机初始化k个簇中心坐标
- 计算数据集内所有点到k个簇中心的距离,并将数据点划分近最近的簇
- 更新簇中心坐标为当前簇内节点的坐标平均值
- 重复2、3步骤直到簇中心坐标不再改变(收敛了)
事实上,若将样本的类别看做为“隐变量”(latent variable),类中心看作样本的分布参数,这一过程正是通过EM算法的两步走策略而计算出,其根本的目的是为了最小化平方误差函数E:
这里的重新计算每个簇的质心,如何计算的是根据目标函数得来的,因此在开始时我们要考虑距离度量和目标函数。
考虑欧几里得距离的数据,使用误差平方和(Sum of the Squared Error,SSE)作为聚类的目标函数,两次运行K均值产生的两个不同的簇集,我们更喜欢SSE最小的那个。
1.2.2 优缺点
优点:效率高、适用于大规模数据集
缺点 | 改进 | 描述 |
---|---|---|
k值的确定 | ISODATA | 当属于某个簇的样本数过少时把这个簇去除, 当属于某个簇的样本数过多、分散程度较大时把这个簇分为两个子簇 |
对奇异点敏感 | k-median | 中位数代替平均值作为簇中心 |
只能找到球状群 | GMM | 以高斯分布考虑簇内数据点的分布 |
分群结果不稳定 | K-means++ | 初始的聚类中心之间的相互距离要尽可能的远 |
1.2.3 k值得选取
K-means算法要求事先知道数据集能分为几群,主要有两种方法定义k。
- 手肘法:通过绘制k和损失函数的关系图,选拐点处的k值。
- 经验选取人工据经验先定几个k,多次随机初始化中心选经验上最适合的。
通常都是以经验选取,因为实际操作中拐点不明显,且手肘法效率不高。
1.3 学习向量量化(LVQ)
LVQ也是基于原型的聚类算法,与K-Means不同的是,LVQ使用样本真实类标记辅助聚类,首先LVQ根据样本的类标记,从各类中分别随机选出一个样本作为该类簇的原型,从而组成了一个原型特征向量组,接着从样本集中随机挑选一个样本,计算其与原型向量组中每个向量的距离,并选取距离最小的原型向量所在的类簇作为它的划分结果,再与真实类标比较。
若划分结果正确,则对应原型向量向这个样本靠近一些 若划分结果不正确,则对应原型向量向这个样本远离一些
LVQ算法的流程如下所示:
1.4 高斯混合聚类**
现在可以看出K-Means与LVQ都试图以类中心作为原型指导聚类,高斯混合聚类则采用高斯分布来描述原型。现假设每个类簇中的样本都服从一个多维高斯分布,那么空间中的样本可以看作由k个多维高斯分布混合而成。
对于多维高斯分布,其概率密度函数如下所示:
其中u表示均值向量,∑表示协方差矩阵,可以看出一个多维高斯分布完全由这两个参数所确定。接着定义高斯混合分布为:
α称为混合系数,这样空间中样本的采集过程则可以抽象为:(1)先选择一个类簇(高斯分布),(2)再根据对应高斯分布的密度函数进行采样,这时候贝叶斯公式又能大展身手了:
此时只需要选择PM最大时的类簇并将该样本划分到其中,看到这里很容易发现:这和那个传说中的贝叶斯分类不是神似吗,都是通过贝叶斯公式展开,然后计算类先验概率和类条件概率。但遗憾的是:这里没有真实类标信息,对于类条件概率,并不能像贝叶斯分类那样通过最大似然法美好地计算出来,因为这里的样本可能属于所有的类簇,这里的似然函数变为:
可以看出:简单的最大似然法根本无法求出所有的参数,这样PM也就没法计算。这里就要召唤出之前的EM大法,首先对高斯分布的参数及混合系数进行随机初始化,计算出各个PM(即γji,第i个样本属于j类),再最大化似然函数(即LL(D)分别对α、u和∑求偏导 ),对参数进行迭代更新。
高斯混合聚类的算法流程如下图所示:
2. 面试题
2.1 kmeans
1. K-means算法中初始点的选择对最终结果的影响
K-means选择的初始点不同获得的最终分类结果也可能不同,随机选择的中心会导致K-means陷入局部最优解。
2. 为什么在计算K-means之前要将数据点在各维度上归一化
因为数据点各维度的量级不同。
举个例子,最近正好做完基于RFM模型的会员分群,每个会员分别有R(最近一次购买距今的时长)、F(来店消费的频率)和M(购买金额)。如果这是一家奢侈品商店,你会发现M的量级(可能几万元)远大于F(可能平均10次以下),如果不归一化就算K-means,相当于F这个特征完全无效。如果我希望能把常客与其他顾客区别开来,不归一化就做不到。
- K-means不适用哪些数据
- 数据特征极强相关的数据集,因为会很难收敛(损失函数是非凸函数),一般要用kernal K-means,将数据点映射到更高维度再分群。
- 数据集可分出来的簇密度不一,或有很多离群值(outliers),这时候考虑使用密度聚类。
K-means 中常用的距离度量
K-means中比较常用的距离度量是欧几里得距离和余弦相似度。K-means是否会一直陷入选择质心的循环停不下来(为什么迭代次数后会收敛)?
从K-means的第三步我们可以看出,每回迭代都会用簇内点的平均值去更新簇中心,所以最终簇内的平方误差和(SSE, sum of squared error)一定最小。 平方误差和的公式如下:
聚类和分类区别
- 产生的结果相同(将数据进行分类)
- 聚类事先没有给出标签(无监督学习)
- 如何对K-means聚类效果进行评估
回到聚类的定义,我们希望得到簇内数据相似度尽可能地大,而簇间相似度尽可能地小。常见的评估方式:
名称 | 公式 | 含义 | 如何比较 |
---|---|---|---|
sum of squares within clusters(SSW) | 所有簇内差异之和 | 越小越好 | |
sum of squares between clusters(SSB) | 簇心与簇内均值差异的加权和 | 越大越好 | |
Calinski-Harabasz | 簇间距离和簇内距离之比(除数是惩罚项,因为SSW下降地比较快) | 越大越好 | |
Ball&Hall | 几乎同SSW | 越小越好 | |
Dunn’s index |
|
本质上也是簇间距离和簇内距离之比 | 越大越好 |
另一个常见的方法是画图,将不同簇的数据点用不同颜色表示。这么做的好处是最直观,缺点是无法处理高维的数据,它最多能展示三维的数据集。
如果维数不多也可以做一定的降维处理(PCA)后再画图,但会损失一定的信息量。
聚类算法几乎没有统一的评估指标,可能还需要根据聚类目标想评估方式,如对会员作分群以后,我想检查分得的群体之间是否确实有差异,这时候可以用MANOVA计算,当p值小于0.01说明分群合理。
- K-means中空聚类的处理
如果所有的点在指派步骤都未分配到某个簇,就会得到空簇。如果这种情况发生,则需要某种策略来选择一个替补质心,否则的话,平方误差将会偏大。
- 一种方法是选择一个距离当前任何质心最远的点。这将消除当前对总平方误差影响最大的点。
- 另一种方法是从具有最大SEE的簇中选择一个替补的质心。这将分裂簇并降低聚类的总SEE。如果有多个空簇,则该过程重复多次。另外编程实现时,要注意空簇可能导致的程序bug。
- K-Means 的迭代循环停止条件
簇不发生变化或达到最大迭代次数