十分钟搞定pandas

转载:http://www.cnblogs.com/chaosimple/p/4153083.html

本文是对pandas官方网站上《10 Minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook 。习惯上,我们会按下面格式引入所需要的包:

一、 创建对象

可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Series,pandas会默认创建整型索引

2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame

4、查看不同列的数据类型

5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集

二、 查看数据

详情请参阅:Basics Section

1、 查看frame中头部和尾部的行

2、 显示索引、列和底层的numpy数据

3、 describe()函数对于数据的快速统计汇总

4、 对数据的转置

5、 按轴进行排序

6、 按值进行排序

三、 选择

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式:.at, .iat, .loc, .iloc 和 .ix详情请参阅Indexing and Selecing DataMultiIndex / Advanced Indexing

获取

1、 选择一个单独的列,这将会返回一个Series,等同于df.A:

2、 通过[]进行选择,这将会对行进行切片

通过标签选择

1、 使用标签来获取一个交叉的区域

2、 通过标签来在多个轴上进行选择

3、 标签切片

4、 对于返回的对象进行维度缩减

5、 获取一个标量

6、 快速访问一个标量(与上一个方法等价)

通过位置选择

1、 通过传递数值进行位置选择(选择的是行)

2、 通过数值进行切片,与numpy/python中的情况类似

3、 通过指定一个位置的列表,与numpy/python中的情况类似

4、 对行进行切片

5、 对列进行切片

6、 获取特定的值

布尔索引

1、 使用一个单独列的值来选择数据

2、 使用where操作来选择数据

3、 使用isin()方法来过滤

设置

1、 设置一个新的列

2、 通过标签设置新的值

3、 通过位置设置新的值

4、 通过一个numpy数组设置一组新值

上述操作结果如下:

5、 通过where操作来设置新的值

四、 缺失值处理

在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section

1、 reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:

2、 去掉包含缺失值的行

3、 对缺失值进行填充

4、 对数据进行布尔填充

五、 相关操作

详情请参与 Basic Section On Binary Ops

统计(相关操作通常情况下不包括缺失值)

1、 执行描述性统计

2、 在其他轴上进行相同的操作

3、 对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播

Apply

1、 对数据应用函数

直方图

具体请参照:Histogramming and Discretization

字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.

六、 合并

Pandas提供了大量的方法能够轻松的对Series,DataFrame和Panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section

Concat

Join

类似于SQL类型的合并,具体请参阅:Database style joining

Append

将一行连接到一个DataFrame上,具体请参阅Appending

七、 分组groupby

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

  • (Splitting)按照一些规则将数据分为不同的组;

  • (Applying)对于每组数据分别执行一个函数;

  • (Combining)将结果组合到一个数据结构中;

详情请参阅:Grouping section

1、 分组并对每个分组执行sum函数

2、 通过多个列进行分组形成一个层次索引,然后执行函数

统计每个分组的数量


深度截图20170523093706.png

八、 Reshaping

详情请参阅 Hierarchical IndexingReshaping

Stack

数据透视表

详情请参阅:Pivot Tables.

可以从这个数据中轻松的生成数据透视表:

九、 时间序列

Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section

1、 时区表示:

2、 时区转换:

3、 时间跨度转换:

4、 时期和时间戳之间的转换使得可以使用一些方便的算术函数。

十、 Categorical

从0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introductionAPI documentation

1、 将原始的grade转换为Categorical数据类型

2、 将Categorical类型数据重命名为更有意义的名称

3、 对类别进行重新排序,增加缺失的类别

4、 排序是按照Categorical的顺序进行的而不是按照字典顺序进行

5、 对Categorical列进行排序时存在空的类别

十一、 画图

具体文档参看:Plotting docs

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

十二、 导入和保存数据

CSV,参考:Writing to a csv file

1、 写入csv文件

2、 从csv文件中读取

HDF5

参考:HDFStores

1、 写入HDF5存储

2、 从HDF5存储中读取

Excel

参考:MS Excel

1、 写入excel文件

2、 从excel文件中读取

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容