Hive编程指南:调优

(1)使用explain
在查询语句前加上explain,可以帮助看hive如何将查询转化成mapreduce任务:

一个hive任务会包含有一个或多个stage(阶段),不同的stage间会存在着依赖关系,越复杂的查询通常将会引入越多的stage,耗费更长的时间,
一个stage可以是一个mapreduce任务,也可以是一个抽样的阶段,或者一个合并的阶段,还可以是一个limit阶段,默认情况下,hive会一次执行一个stage(阶段)

(2)explain extended
该语句可以产生更多的输出信息

(3)limit
输出限制

(4)join优化

在进行join操作的时候,需要清楚哪个表是最大的,并将最大的表放置在join语句的最右边,或者直接使用/* streamtable(table_name)*/ 显式指定

可以通过执行 map-side join 减少reduce过程,提高性能

A、Map端join的好处是可以提前过滤掉join中需要排除的大量数据,会减少数据的传输。
B、Reduce端做join是比较灵活,然后缺点是需要做大量数据传输、和整个shuffle过程都是耗时,
咱们尽量在,因为知道reduce中才做join即对数据进行筛选。
Reduce-side-join做join时, 尽量在map阶段过滤掉不需要的数据。
Reduce-side-join做join时,要考虑能不能高效的再map端做join。

(5)本地模式
hive可以通过本地模式在单台机器上处理所有的任务,对于小数据集,执行时间可以明显缩短

set hive.exec.mode.local.auto=true

(6)并行执行
如果某些stage并非完全依赖,可以并行执行,set hive.exec.parallel=true,就可以开启并发执行,但需要注意的是,这样会增加集群利用率

(7)严格模式
通过设置 set hive.mapred.mode=strict可以禁止3种类型的查询

1、对于分区表,必须指定分区字段进行查询,否则不允许执行

2、对于使用order by 语句的查询,必须使用limit 语句
因为order by 为了执行排序过程会将所有的结果数据分发到一个reducer中进行处理

3、限制笛卡尔积的查询

(8)调整mapper和reducer个数

4、虚拟列
hive提供了两种虚拟列:一种用于将要进行划分的输入文件名,另一种用于文件中的块内偏移量,当hive产生了非预期的或null的返回结果时,可以通过这些虚拟列诊断查询
。通过查询这些字段,用户可以查看到哪个文件甚至哪行数据导致出现问题

一、Hive下查看数据表信息的方法
方法1:查看表的字段信息
desc table_name;
方法2:查看表的字段信息及元数据存储路径
desc extended table_name;
方法3:查看表的字段信息及元数据存储路径
desc formatted table_name;

查看该表总容量大小,单位为G
hadoop fs -du /data/hive/warehouse/dmt.db/user_inv_par_info_mon|awk '{ SUM +=1 } END { print SUM/(102410241024)}'

对于group by或distinct,设定 hive.groupby.skewindata=true -- 防止group by 过程出现倾斜

distinct 和group by 的效率执行

select distinct user_id from dmt.user_inv_par_info_mon;

select user_id from dmt.user_inv_par_info_mon group by user_id;

二者启动的reduce作业数不同,distinct只会启动一个,group by 若没有指定reduce个数,会根据数量的大小动态分配reduce个数。

1、查看所有函数
show functions;

2、查看函数用法
desc function extended concat;

3、lateral view explode() 实现行转列

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容

  • 数据仓库中的SQL性能优化(Hive篇) - 简书 //www.greatytc.com/p/808a5...
    葡萄喃喃呓语阅读 4,554评论 0 31
  • 1.1 Fetch抓取 Fetch抓取是指,Hive中对某些情况的查询可以不必使用MapReduce计算。例如:S...
    Movle阅读 406评论 0 6
  • 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的...
    Alukar阅读 871评论 0 2
  • 1.Hive原理 Hive是构建在Hadoop上的数据仓库软件框架,支持使用SQL来读,写和管理大规模数据集合。H...
    samjinzhang阅读 7,427评论 0 22
  • 姓名曹彩萍~公司丹阳明煌工具。 日精进打卡第 42天 《六项精进》1遍 《大学》...
    曹彩萍阅读 96评论 0 0