前向欧拉方程

欧拉方法是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解。它是一种解决数值常微分方程的最基本的一类显型方法

\begin{cases} \dot x(t)=v(t) \\ \dot v(t)=a(t) =\frac{F}{m} \end{cases}

我们用上面的方程来控制位置和速度的变化率。

  • 位置的变化率是速度,
  • 速度的变化率是加速度,

按牛顿第二定律,力除以质量,在典型的设置中,我们也知道时间0处的位置和 速度。
现在我们使用计算机来了解这些方程式导致的结果,最简单的方法称为前向欧拉方法。

Small time steps of size h:

\begin{cases} x(h)=x(0)+hv(0) \\ v(h)=v(0)+h\frac{F}{m} \end{cases}

欧拉的思想是通过在很短的时间内来解决这些方程式。如果我们从初始位置——x(0)和初始速度——v(0)开始,那么在一个很的短时间间隔h内会发生什么呢?

位置将大约增加速度的h倍:如果速度是每秒2米,我们等待3秒,位置将改变6米。当然,实际仿真时我们使用的时间步长要小得多。
速度的变化也是类似的,在一些小的时间间隔h之后,速度将是其原始值加上时间步长乘以加速度,即\frac{F}{m}

所以这个方程会使我们获得大概从时刻0到时刻h的解。这里用等号其实并不是很准确,应该是约等于。
\begin{cases} x(2h)=x(h)+hv(h) \\ v(2h)=v(h)+h\frac{F}{m} \end{cases}
以同样的方式,我们可以用另一个时间步长得出从h到2h的结果。我们知道在第一步结束时我们已达到的位置,并且我们继续使用新的速度,这导致了新的位置——速度也是类似的。反复迭代此过程,就可以随时查找位置和速度的估计值。

另一种角度看上面的公式:从当前时刻出发,根据当前时刻的函数值及其导数,可得到下一时刻的值。因此显式欧拉法又称为前向欧拉(Forward Euler)

参考
https://www.youtube.com/watch?v=42-eBNm3rCY

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容