谷歌是如何高效做AB实验的

本人微信公众号为“推荐算法学习笔记”,定期推出经典推荐算法文章,欢迎关注。

我们知道互联网公司经常要上线各种各样的实验,例如修改UI界面的某个按钮,上线一个新的算法等等。通过实验的对比指标来衡量这些修改对用户的影响程度,以此来提高用户体验,提高公司收益等等。本文主要参考google经典论文《Overlapping Experiment Infrastructure:

More, Better, Faster Experimentation》第4部分,阐述谷歌等大厂都是如何高效地做ab实验的。

一. 可能想到的实验方案

方案1)将用户分成两半,一半做对照组,一半做实验组

缺点:一次只能做一个实验,假如想要同时做两个实验,将无法满足

方案2)将用户分桶,例如通过用户ID取模分成1000个桶,一些桶做基线,一些桶做实验

缺点:如果桶分的太少,同一时间可以做的实验还是受到限制。如果桶分的太多,每个实验桶的流量将会变少,置信度将会降低,需要更长的实验时间。

同时,假如我们的实验涉及到多个系统服务,这些系统服务之间是有关联的。以一个新闻推荐系统为例,我们知道,当系统接受到一个用户请求的时候,首先会去召回系统里面取出候选的新闻,然后再将这些候选的新闻发送到精排系统进行排序,假如召回系统和精排系统同时在做ab实验,怎么消除这两个系统的相互影响?


二. 正交实验

可以看到上述方案的缺点是一个用户请求只能进行一个实验,那假如一个用户请求我们同时进行N个实验呢?如果一个用户请求同时进行N个实验,我们怎么排除这些实验之间相互干扰?答案就是使用正交实验

假如我们要做一个关于UI界面的实验。实验1为将按钮的颜色设置为红色(20%流量)和蓝色(80%流量),实验2将页面背景设置为白色(50%流量)或黑色(50%流量),正交实验如下图所示


可以看到,我们只要将实验1的用户像洗牌一样重新打散,均匀地分布在实验2里面,就可以消除实验1对实验2的影响。同时,每个用户请求是同时进行进行2个实验的(按钮为红/蓝,背景白色/黑色)。利用正交实验,我们的每个实验都可以利用到全部的流量。

那么我们怎么将实验1的用户均匀地分布到实验2呢?答案就是在hash的时候加一个前缀。例如通过使用函数 hash(实验ID+用户ID)%1000,将(实验1的ID+用户ID)取模1000后小于200的用户的按钮颜色设置为红色,大于等于200的设置为蓝色,同时,将(实验2的ID+用户ID)取模1000后小于500的用户背景设置为白色,大于等于500的用户背景设置为黑色即可。这就是正交实验。

三. 谷歌分层重叠实验框架

在正交实验的基础上,通过对流量的切割,以及分层重叠嵌套,便可设计出更为灵活的AB实验框架。

首先介绍3个概念

1) domain:全部流量被切割之后的一段流量

2)layer:在layer里面包含一系列可以改变的参数。例如上面的实验可以分成2个layer,layer1对应实验1,layer2对应实验2。

3)experiment:在layer里面可以添加桶,例如通过 hash(layerId + userId)%1000 , 然后把实验放入桶中。

1个domain可以有多个重叠的layer,1个layer反过来也可以嵌套多个domain,实验最终落入到layer里面的bucket里面。

以下面两个图为例,假如用户流量是从上往下流进来的


在(a)中,只有1个domain,domain里面嵌套了3个layer。当用户请求过来的时候,会依次经过UI Layer,Search results layer和Ads result layer,在各个layer里面通过 hash(layerId + userId)%1000 映射到对应的桶取出相应的experiment。因此1个用户请求最多会同时进行3个实验

在(b)中,流量被切割成2个domain,1个domain只有1个layer,另一个domain有3个layer。当用户请求被分配到domain1的时候,最多将会进行1个实验,当用户请求被分配到domain2的时候,用户最多将会进行3个实验。

利用这个思想,我们便可以设计更为复杂灵活的AB实验框架,如下图所示


值得注意的是,各个layer之间的实验是要独立的。例如layer1中的实验是设置按钮为白色和黑色,layer3的实验是设置按钮为白色和红色,这样的两个layer之间就不是独立的了,那么正交性就会遭到破坏。需要特别注意这一点。

四. 总结

以上便是本文所有内容,更多具体细节可查看论文《Overlapping Experiment Infrastructure:More, Better, Faster Experimentation》。如果有问题或错误,欢迎随时联系~

本人微信公众号为“推荐算法学习笔记”,定期推出经典推荐算法文章,欢迎关注。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,978评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,954评论 2 384
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,623评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,324评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,390评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,741评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,892评论 3 405
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,655评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,104评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,451评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,569评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,254评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,834评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,725评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,950评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,260评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,446评论 2 348

推荐阅读更多精彩内容