<深入Java虚拟机>之1.4:内存分配机制

一、简介

    JVM采用分代垃圾回收。JVM把堆空间分为年老代和年轻代。98%的对象创建了没多久就会消亡,存储在年轻代,而年老代中存放生命周期长久的实例对象。年轻代中又被分为Eden区(圣经中的伊甸园)、和两个Survivor区。新的对象分配是首先放在Eden区,Survivor区作为Eden区和Old区的缓冲,在Survivor区的对象经历若干次收集仍然存活的,就会被转移到年老区。


GC 空间

    HotSpot JDK(1.6为例)将其物理堆上划分为两个空间:

    – 新生代(young generation)和老年代(old generation)+ 方法区

    新生代(Young generation): 大部分对象在创建后会很快变得不可到达,所以很多对象被创建在新生代,然后消失。对象从这个区域消失的过程我们称之为”minor GC“。一般在此使用的GC算法是Copying(复制)算法。因为大部分对象马上消亡所以复制的成本很低又解决了标记-清除算法的碎片化问题。注意,Minor GC并不代表年轻代内存不足,它事实上只表示在Eden区上的GC。

    老年代(Old generation): 对象没有变得不可达,并且从新生代中存活下来,经过几次后,会被拷贝到这里。其所占用的空间要比新生代多。也正由于其相对较大的空间,发生在老年代上的GC要比新生代少得多。对象从老年代中消失的过程,我们称之为“major GC”,一般采用Mark-Compact算法。、

    上图中的持久代(permanent generation)也被称为方法区method area)。他用来保存类常量以及字符串常量。因此,这个区域不是用来永久的存储那些从老年代存活下来的对象。这个区域也可能发生GC。并且发生在这个区域上的GC事件也会被算为major GC。

❓: 如果老年代的对象需要引用一个新生代的对象,会发生什么呢?

答:如果需要执行Minor GC,则可能需要查询整个老年代以确定是否可以清理回收,。所以老年代中存在一个"card table"的数据结构,是一个512bytes的数组,所有老年代对象引用新生代对象的记录都记录在这里。Young GC时,只要查这里即可,不用再去查全部老年代,因此性能大大提高。


二. 内存分配步骤

    年轻代可以分为3个区域:Eden区和两个存活区(From 区 、To 区)。


新生代

    1⃣️ :绝大多数刚创建的对象会被分配在Eden区,Eden区是连续的内存空间,因此在其上分配内存极快。

    2⃣️ :当Eden区满的时候,执行Minor GC,将消亡的对象清理掉,并将存活的对象复制到一个存活区From区(此时,To区是空白的,两个Survivor区总有一个是空白的)。

    3⃣️ :此后,在Eden区执行GC之后,存活的对象会被堆积在同一个Survivor空间。

    4⃣️ :当一个Survivor空间饱和,还在存活的对象会被移动到另一个Survivor空间。之后会清空已经饱和的那个Survivor空间。

    5⃣️ :在以上的步骤中重复几次依然存活的对象,就会被移动到老年代。当对象在Survivor区躲过一次GC的话,其对象年龄便会加1,默认情况下,如果对象年龄达到15岁,就会移动到老年代中。

    一般来说,大对象会被直接分配到老年代,大对象是指需要大量连续存储空间的对象,最常见的一种大对象就是大数组,比如:

    byte[] data = new byte[8*1024*1024]

    这种一般会直接在老年代分配存储空间。

在Eden区,HotSpot虚拟机使用了两种技术来加快内存分配。分别是bump-the-pointer和TLAB(Thread-Local Allocation Buffers),具体请自行百度。


三. 空间分配担保

    在发生Minor GC之前,jvm会检查年老代最大可用的连续空间是否大于新生代所有对象的总空间,如果成立,那么Minor GC是确保安全的。如果不成立,则jvm会查看HandlePromotionFailure的值是否允许担保,如果允许则继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小。如果大于将尝试一次Minor GC,如果小于或者HandlePromotionFailure不允许“冒险”,则进行一次Major GC。大部分时候都打开HandlePromotionFailure防止频繁Major GC。

可能存在年老代对象引用新生代对象的情况,如果需要执行Young GC,则可能需要查询整个老年代以确定是否可以清理回收,这显然是低效的。解决的方法是,年老代中维护一个512 byte的块——”card table“,所有老年代对象引用新生代对象的记录都记录在这里。Young GC时,只要查这里即可,不用再去查全部老年代,因此性能大大提高。

步骤流程:


HandlePromotionFailure检查步骤
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容