hadoop的介绍

一、hadoop背景介绍

1.1 什么是HADOOP

  1. HADOOP是apache旗下的一套开源软件平台

  2. HADOOP提供的功能:利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理

  3. HADOOP的核心组件有

    A. HDFS(分布式文件系统)hdfs

    B. YARN(运算资源调度系统)yarn

    C. MAPREDUCE(分布式运算编程框架)mapreduce

  4. 广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈

1.2 HADOOP产生背景

  1. HADOOP最早起源于Nutch。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题——如何解决数十亿网页的存储和索引问题。
  2. 2003年、2004年谷歌发表的两篇论文为该问题提供了可行的解决方案。
    ——分布式文件系统(GFS),可用于处理海量网页的存储
    ——分布式计算框架MAPREDUCE,可用于处理海量网页的索引计算问题。
  3. Nutch的开发人员完成了相应的开源实现HDFS和MAPREDUCE,并从Nutch中剥离成为独立项目HADOOP,到2008年1月,HADOOP成为Apache顶级项目,迎来了它的快速发展期。

1.3 HADOOP在大数据、云计算中的位置和关系

  1. 云计算是分布式计算、并行计算、网格计算、多核计算、网络存储、虚拟化、负载均衡等传统计算机技术和互联网技术融合发展的产物。借助IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等业务模式,把强大的计算能力提供给终端用户。

  2. 现阶段,云计算的两大底层支撑技术为“虚拟化”和“大数据技术”

  3. 而HADOOP则是云计算的PaaS层的解决方案之一,并不等同于PaaS,更不等同于云计算本身。

1.4 国内外HADOOP应用案例介绍

1、HADOOP应用于数据服务基础平台建设


2、HADOOP用于用户画像


3、HADOOP用于网站点击流日志数据挖掘

1.5 hadoop就业职位的要求

大数据是个复合专业,包括应用开发、软件平台、算法、数据挖掘等,因此,大数据技术领域的就业选择是多样的,但就HADOOP而言,通常都需要具备以下技能或知识:

A. HADOOP分布式集群的平台搭建

B. HADOOP分布式文件系统HDFS的原理理解及使用

C. HADOOP分布式运算框架MAPREDUCE的原理理解及编程

D. Hive数据仓库工具的熟练应用

E. Flume、sqoop、oozie等辅助工具的熟练使用

F. Shell/python等脚本语言的开发能力

1.6 HADOOP生态圈以及各组成部分的简介

1、各组件简介:

HADOOP(hdfs、MAPREDUCE、yarn) 元老级大数据处理技术框架,擅长离线数据分析

Zookeeper 分布式协调服务基础组件

Hbase 分布式海量数据库,离线分析和在线业务通吃

Hive sql 数据仓库工具,使用方便,功能丰富,基于MR延迟大

Sqoop数据导入导出工具

Flume数据采集框架

2、重点组件:

HDFS:分布式文件系统

MAPREDUCE:分布式运算程序开发框架

HIVE:基于大数据技术(文件系统+运算框架)的SQL数据仓库工具

HBASE:基于HADOOP的分布式海量数据库

ZOOKEEPER:分布式协调服务基础组件

Mahout:基于mapreduce/spark/flink等分布式运算框架的机器学习算法库

Oozie:工作流调度框架

Sqoop:数据导入导出工具

Flume:日志数据采集框架

二、分布式系统的概述

注:由于大数据技术领域的各类技术框架基本上都是分布式系统,因此,理解hadoop、storm、
spark等技术框架,都需要具备基本的分布式系统概念

2.1 分布式软件系统(Distributed Software Systems)

 该软件系统会划分成多个子系统或模块,各自运行在不同的机器上,子系统或模块之间通过网络通信进行协作,实现最终的整体功能

 比如分布式操作系统、分布式程序设计语言及其编译(解释)系统、分布式文件系统和分布式数据库系统等。

2.2 分布式软件系统举例:solrcloud

A. 一个solrcloud集群通常有多台solr服务器

B. 每一个solr服务器节点负责存储整个索引库的若干个shard(数据分片)

C. 每一个shard又有多台服务器存放若干个副本互为主备用

D. 索引的建立和查询会在整个集群的各个节点上并发执行

E. solrcloud集群作为整体对外服务,而其内部细节可对客户端透明

总结:利用多个节点共同协作完成一项或多项具体业务功能的系统就是分布式系统。

2.3 分布式应用系统模拟开发

需求:可以实现由主节点将运算任务发往从节点,并将各从节点上的任务启动;

程序清单:

AppMaster

AppSlave/APPSlaveThread

Task

程序运行逻辑流程:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容