Tensorflow多GPU训练模型

Thanks to : http://www.tensorfly.cn/tfdoc/api_docs/SOURCE/tutorials/deep_cnn.html

现代的工作站可能包含多个 GPU 进行科学计算。TensorFlow 可以利用这一环境在多个 GPU 卡上运行训练程序。

在并行、分布式的环境中进行训练,需要对训练程序进行协调。对于接下来的描述,术语模型拷贝(model replica)特指在一个数据子集中训练出来的模型的一份拷贝。

如果天真的对模型参数的采用异步方式更新将会导致次优的训练性能,这是因为我们可能会基于一个旧的模型参数的拷贝去训练一个模型。但与此相反采用完全同步更新的方式,其速度将会变得和最慢的模型一样慢 (Conversely, employing fully synchronous updates will be as slow as the slowest model replica.)。

在具有多个 GPU 的工作站中,每个 GPU 的速度基本接近,并且都含有足够的内存来运行整个 CIFAR-10 模型。因此我们选择以下方式来设计我们的训练系统:

在每个 GPU 上放置单独的模型副本;

等所有 GPU 处理完一批数据后再同步更新模型的参数;

示意图如下:


多GPU训练机制示意图

可以看到,每一个 GPU 会用一批独立的数据计算梯度和估计值。这种设置可以非常有效的将一大批数据分割到各个 GPU 上。

这一机制要求所有 GPU 能够共享模型参数。但是众所周知在 GPU 之间传输数据非常的慢,因此我们决定在 CPU 上存储和更新所有模型的参数 (对应图中绿色矩形的位置)。这样一来,GPU 在处理一批新的数据之前会更新一遍的参数。

图中所有的 GPU 是同步运行的。所有 GPU 中的梯度会累积并求平均值 (绿色方框部分)。模型参数会利用所有模型副本梯度的均值来更新。

在多个设备中设置变量和操作

在多个设备中设置变量和操作时需要做一些特殊的抽象。

我们首先需要把在单个模型拷贝中计算估计值和梯度的行为抽象到一个函数中。在代码中,我们称这个抽象对象为 “tower”。对于每一个 “tower” 我们都需要设置它的两个属性:

  • 在一个 tower 中为所有操作设定一个唯一的名称。tf.name_scope()通过添加一个范围前缀来提供该唯一名称。比如,第一个 tower 中的所有操作都会附带一个前缀 tower_0,示例:tower_0/conv1/Conv2D

  • 在一个 tower 中运行操作的优先硬件设备。 tf.device() 提供该信息。比如,在第一个 tower 中的所有操作都位于 device('/gpu:0') 范围中,暗含的意思是这些操作应该运行在第一块 GPU 上;

为了在多个 GPU 上共享变量,所有的变量都绑定在 CPU 上,并通过 tf.get_variable()访问。可以查看 Sharing Variables 以了解如何共享变量。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容