大数据环境部署(三)

Kafka安装

1 下载

地址http://kafka.apache.org/downloads

image.png

2 解压

tar -zxvf kafka_2.11-0.11.0.1.tgz -C /opt/wsqt/core

mv kafka_2.11-0.10.2.1/ kafka

分发kafka文件夹

scp -r kafka hadoop@hadoop004:/opt/wsqt/core/

scp -r kafka hadoop@hadoop005:/opt/wsqt/core/

3 修改配置文件

在hadoop003 hadoop004 hadoop005 机器上 分别修改

vi /opt/wsqt/core/kafka/config/server.properties

配置host 和 zk连接 以及 brokerID

Hadoop003

image.png

Hadoop004

image.png

Hadoop005

image.png
broker.id=1 delete.topic.enable=true host.name=192.168.139.137 port=9092 num.network.threads=3 num.io.threads=8 socket.send.buffer.bytes=102400 socket.receive.buffer.bytes=102400 socket.request.max.bytes=104857600 log.dirs=/opt/wsqt/data/kafka num.partitions=2 num.recovery.threads.per.data.dir=1 log.retention.hours=168 log.segment.bytes=1073741824 log.retention.check.interval.ms=300000 zookeeper.connect=hadoop003:2181,hadoop004:2181,hadoop005:2181 zookeeper.connection.timeout.ms=6000

4.配置环境变量

5 启动kafka

Hadoop003 Hadoop004 Hadoop005 分别启动

kafka-server-start.sh -daemon /opt/wsqt/core/kafka/config/server.properties

6 jps验证

jps

image.png

Spark安装

1 下载

http://spark.apache.org/downloads.html

image.png

2 解压

tar -zxvf spark-2.3.0-bin-hadoop2.6.tgz -C /opt/wsqt/core

mv spark-2.3.0-bin-hadoop2.6/ spark

分发spark文件夹

scp -r spark hadoop@hadoop002:/opt/wsqt/core/

scp -r spark hadoop@hadoop003:/opt/wsqt/core/

scp -r spark hadoop@hadoop004:/opt/wsqt/core/

scp -r spark hadoop@hadoop005:/opt/wsqt/core/

3 修改配置文件

spark/conf/slaves

*\#\# A Spark Worker will be started on each of the machines listed below.*

hadoop002

hadoop003

hadoop004

hadoop005
spark/conf/spark-defaults.conf (可不修改)
*\#主节点设置,多个节点高可用*

spark.master spark://hadoop001:7077,hadoop002:7077

spark.eventLog.enabled true

spark.eventLog.dir hdfs://wsqt/SparkeventLog

spark.eventLog.compress false

*\#一个类,用于序列化网络传输或者以序列化形式缓存起来的各种对象*

spark.serializer org.apache.spark.serializer.KryoSerializer

*\#\#Spark应用程序Application所占的内存大小,这里的Driver对应Yarn中的ApplicationMaster;*

spark.driver.memory 1g

*\#\# Amount of memory to use per executor process, in the same format as JVM
memory strings (e.g. 512m, 2g).对应的container ---每个处理器可以使用的内存大小*

spark.executor.memory 2g

spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value -Dnumbers="one
two three"

*environment variables set by the cluster manager.设置多个分散io*

spark.local.dir /opt/wsqt/data/disk1/tmp/spark/local

*\#\#Port for your application's dashboard, which shows memory and workload
data应用程序控制面板端口号*

spark.ui.port 4040

*\#\#job运行期间的压缩的相关设置*

spark.broadcast.compress true *\#\#广播变量在发送之前是否先要被压缩*

spark.rdd.compress false *\#\#是否要压缩序列化的RDD分区*

spark.io.compression.codec snappy *\#\#压缩内部数据使用的编码器*

spark.io.compression.snappy.block.size 32768 *\#\#字节为单位*

*\#\#Default number of tasks to use across the cluster for distributed shuffle
operations (groupByKey, reduceByKey, etc) when not set by user.*

spark.default.parallelism 12 *\#\#本地机器内核数*
spark/conf/spark-env.sh
export JAVA_HOME=/opt/wsqt/core/java

export HADOOP_CONF_DIR=/opt/wsqt/core/hadoop/etc/hadoop

export SPARK_HOME=/opt/wsqt/core/spark

*\#\#可以启动多个实例*

export SPARK_EXECUTOR_INSTANCES=1

export SPARK_EXECUTOR_CORES=1

export SPARK_EXECUTOR_MEMORY=1G

export SPARK_DRIVER_MEMORY=1G

*\#\#master节点的webui端口*

export SPARK_MASTER_WEBUI_PORT=18080

*\#\#worker节点的webui端口*

export SPARK_WORKER_WEBUI_PORT=18081

export SPARK_WORKER_DIR=/opt/wsqt/core/spark/work

export SPARK_LOG_DIR=/opt/wsqt/logs/spark

*\#\#为pid文件设置目录,防止默认/tmp目录下长时间运行导致的pid文件丢失。*

export SPARK_PID_DIR=/opt/wsqt/tmp

*\#\#为了兼容hive元数据,设置mysql连接器*

export
SPARK_CLASSPATH=\$SPARK_CLASSPATH:/opt/wsqt/core/spark/lib/mysql-connector-java-5.1.23-bin.jar

\#\#这里注意mysql连接器的版本可以从/opt/wsqt/core/hive/lib/里面找到,并将它复制到/opt/wsqt/core/spark/lib下

*\#\#启动参数里设置zookeeper,提供master节点的高可用*

export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER
-Dspark.deploy.zookeeper.url=hadoop001:2181,hadoop002:2181,hadoop003:2181
-Dspark.deploy.zookeeper.dir=/spark"

*\#\#设置这个为了兼容hadoop下面的一些lib库,比如snappy*

export LD_LIBRARY_PATH=/opt/wsqt/core/hadoop/lib/native

4 修改sbin目录权限

vi /opt/wsqt/core/spark/sbin/start-master.sh

5 启动spark

直接启动master和所有worker

/opt/wsqt/core/spark/sbin/start-spark-all.sh

或者单独启动master服务可用

/opt/wsqt/core/spark/sbin/start-master.sh

##单独启动所有worker服务可用,此脚本必须。只能在active的master节点上启动。

/opt/wsqt/core/spark/sbin/start-slaves.sh

image.png

6 登陆master节点webui端查看服务器状态

image.png

Flume安装

1 下载

http://www.apache.org/dyn/closer.lua/flume/1.8.0/apache-flume-1.8.0-bin.tar.gz

2 解压

tar -zxvf apache-flume-1.6.0-bin.tar.gz

mv apache-flume-1.6.0-bin/ flume

3 环境变量

4 配置agent

eg 1 logger

exec-memory-logger.sources = exec-source exec-memory-logger.sinks = logger-sink exec-memory-logger.channels = memory-channel exec-memory-logger.sources.exec-source.type = exec exec-memory-logger.sources.exec-source.command = tail -F /opt/wsqt/logs/myproject/access.log exec-memory-logger.sources.exec-source.shell = /bin/sh -c exec-memory-logger.channels.memory-channel.type = memory exec-memory-logger.sinks.logger-sink.type = logger exec-memory-logger.sources.exec-source.channels = memory-channel exec-memory-logger.sinks.logger-sink.channel = memory-channel

Eg2 kafka

exec-memory-kafka.sources = exec-source exec-memory-kafka.sinks = kafka-sink exec-memory-kafka.channels = memory-channel exec-memory-kafka.sources.exec-source.type = exec exec-memory-kafka.sources.exec-source.command = tail -F /opt/wsqt/logs/myproject/access.log exec-memory-kafka.sources.exec-source.shell = /bin/sh -c exec-memory-kafka.channels.memory-channel.type = memory exec-memory-kafka.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSink exec-memory-kafka.sinks.kafka-sink.brokerList = hadoop003:9092 exec-memory-kafka.sinks.kafka-sink.topic = streamingtopic exec-memory-kafka.sinks.kafka-sink.batchSize = 5 exec-memory-kafka.sinks.kafka-sink.requiredAcks = 1 exec-memory-kafka.sources.exec-source.channels = memory-channel exec-memory-kafka.sinks.kafka-sink.channel = memory-channel

5 启动

flume-ng agent \

--name exec-memory-logger \

--conf-file /$FLUME_HOME/conf/streaming_project.conf \

-Dflume.root.logger = INFO,console

部署为三篇:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容