Apriori算法

Apriori算法

1.定义:一种用于关联规则挖掘的代表性算法

2.一些基本的概念:

2.1 数据挖掘可以视为数据库、机器学习和统计学三者的交叉。第一者提供了数据管理技术;后两者提供了数据分析技术。

2.2关联规则是形如 X→Y 的蕴涵表达式,其中X和Y是不相交的项集【包含0个或多个项的集合被称为项集(itemset)】,即 X∩Y=∅。关联规则的强度可以用以下两个指标来衡量:

  • 支持度(support):持度确定规则可以用于给定数据集(全局)的频繁程度
  • 置信度(confidence):确定Y在包含X的交易中出现的频繁程度

两者的公式如下:

两个公式

2.3 用一个简单的例子来解释该概念:

一个超市的收银数据

[图片上传失败...(image-a983f3-1532249865361)]

2.4 因此,大多数关联规则挖掘算法通常采用的一种策略是,将关联规则挖掘任务分解为如下两个主要的子任务:

  • 频繁项集产生:其目标是发现满足最小支持度阈值的所有项集,这些项集称作频繁项集(frequent itemset)。
  • 规则的产生:其目标是从上一步发现的频繁项集中提取所有高置信度的规则,这些规则称作强规则(strong rule)。
  • ps:常常频繁项集产生所需的计算开销远大于产生规则所需的计算开销。寻找频繁项集最容易想到的方法是暴力法(Brute-Force),但此方法通常不可行。

3.先验原理

3.1 Apriori 两条定律:

  • 定律1:如果一个集合是频繁项集,则它的所有子集都是频繁项集。
    • 例如:假设一个集合{A,B}是频繁项集,即A、B同时出现在一条记录的次数大于等于最小支持度min_support,则它的子集{A},{B}出现次数必定大于等于min_support,即它的子集都是频繁项集。
  • 定律2:如果一个集合不是频繁项集,则它的所有超集都不是频繁项集。
    • 举例:假设集合{A}不是频繁项集,即A出现的次数小于 min_support,则它的任何超集如{A,B}出现的次数必定小于min_support,因此其超集必定也不是频繁项集。

3.2 运用定理的一个例子:

下图表示当我们发现{A,B}是非频繁集时,就代表所有包含它的超级也是非频繁的,即可以将它们都剪除。


image

4.Apriori算法与实例【核心】

4.1 算法的形式化描述:

image

4.2 算法的实例:

image

4.3 上条C集生成策略的解释:

image
  • 首先是self-joining部分。例如,假设我们有一个L3={abc, abd, acd, ace, bcd}(注意这已经是排好序的}。选择两个itemsets,它们满足条件:前k-1个item都相同,但最后一个item不同,把它们组成一个新的Ck+1的项集c。如下图所示,{abc}和{abd}组成{abcd},{acd}和{ace}组成{acde}。

  • 生成策略的第二部分是pruning。对于一个位于Ck+1中的项集c,s是c的大小为k的子集,如果s不存在于Lk中,则将c从Ck+1中删除。如下图所示,因为{acde}的子集{cde}并不存在于L3中,所以我们将{acde}从C4中删除。最后得到的C4,仅包含一个项集{abcd}。


    image

5.参考资料

  1. https://blog.csdn.net/baimafujinji/article/details/53456931
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,692评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,482评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,995评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,223评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,245评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,208评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,091评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,929评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,346评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,570评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,739评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,437评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,037评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,677评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,833评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,760评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,647评论 2 354

推荐阅读更多精彩内容