长度分布折线图

library(readr)

# 加载数据
df <- read_delim("all_length.tsv", delim = "\t", col_names = TRUE)

# 移除所有包含 "INV" 的行
df_filtered <- df %>% 
  filter(type != "INV")

df<-df_filtered

# 查看过滤后的数据
head(df)
library(ggplot2)

df_summary <- df %>%
  mutate(binned_length = cut(length, breaks = c(0, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500))) %>%
  group_by(type, group, binned_length) %>%
  summarise(count = n()) %>%
  ungroup()
# 查看数据
head(df_summary)



write.csv(df_summary, file = "df_summary.csv", row.names = FALSE)


df_summary <- df %>%
  mutate(binned_length = cut(length, breaks = c(0, 100, 200, 300, 400, 500,600,700,800,900,1000,5000,10000,100000))) %>%
  group_by(type, group, binned_length) %>%
  summarise(count = n()) %>%
  ungroup()

p=ggplot(df_summary, aes(x = binned_length, y = count, color = type, linetype = group, group = interaction(type, group))) +
  geom_line(size = 1) +
  labs(title = "Length Distribution by Type and Group",
       x = "Length Interval",
       y = "Count",
       color = "Type",
       linetype = "Group") +
  scale_color_manual(values = c("INS" = "blue", "DEL" = "red", "DUP" = "green")) +
  scale_linetype_manual(values = c("Xian" = "solid", "Geng" = "dashed")) +
  theme_minimal()

p



# 保存图
ggsave("length_distribution.png", plot = p, width = 15, height = 8, dpi = 300)



# 计算每个类型、组别和长度区间内的平均值和标准差
df_summary_avg <- df %>%
  mutate(binned_length = cut(length, breaks = c(0, 100, 200, 300, 400, 500,600,700,800,900,1000,5000,10000,100000))) %>%
  group_by(type, group, binned_length) %>%
  summarise(
    mean_length = round(mean(length, na.rm = TRUE)),
    sd_length = round(sd(length, na.rm = TRUE))
  ) %>%
  ungroup()

# 查看结果
df_summary_avg
write.csv(df_summary_avg, file = "df_summary_avg.csv", row.names = FALSE)


不分大的Group

setwd("D:\\科研助理工作\\data\\9-2")
data <- read.table("sv_length.csv", sep = ",", header = TRUE)

data$SVLEN <- abs(as.integer(data$SVLEN))
head(data)

library(dplyr)

# 计算每种 SVTYPE 的均值和标准差
summary_data <- data %>%
  group_by(SVTYPE) %>%
  summarise(mean_SVLEN = mean(SVLEN),
            sd_SVLEN = sd(SVLEN))

print(summary_data)
write.csv(summary_data, "sv_summary.csv", row.names = FALSE)

library(ggplot2)


# 定义分组区间
intervals <- c(0, 100, 500, 1000, 5000, 10000, 20000, 50000, 100000, 300000, 500000, Inf)
labels <- c("<100", "101-500", "501-1000", "1001-5000", "5001-10000", "10001-20000", "20001-50000", "50001-100000", "100001-300000", "300001-500000", ">500000")

result <- data %>%
  mutate(group = cut(SVLEN, breaks = intervals, labels = labels, right = FALSE)) %>%
  group_by(SVTYPE, group) %>%
  summarise(mean_length = mean(SVLEN), sd_length = sd(SVLEN), count = n()) %>%
  mutate(mean_length = as.integer(mean_length), sd_length = as.integer(sd_length))

print(result)

# 保存数据为 CSV 文件
write.csv(result, "sv_grouped_stat.csv", row.names = FALSE)


# 定义分组区间
intervals <- c(0, 100, 500, 1000, 5000, 10000, 20000, 50000, 100000, 300000, 500000, Inf)
labels <- c("<100", "101-500", "501-1000", "1001-5000", "5001-10000", "10001-20000", "20001-50000", "50001-100000", "100001-300000", "300001-500000", ">500000")

result <- data %>%
  mutate(group = cut(SVLEN, breaks = intervals, labels = labels, right = FALSE)) %>%
  group_by(SVTYPE, group) %>%
  summarise(count = n())

# 绘制折线图
ggplot(result, aes(x = group, y = count, color = SVTYPE)) +
  geom_line() +
  geom_point() +
  labs(x = "SV Length Group", y = "Count", title = "SV Length Distribution by SVTYPE", color = "SVTYPE") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))



# 定义分组区间
intervals <- c(0, 100, 500, 1000, 5000, 10000, 20000, 50000, 100000, 300000, 500000, Inf)
labels <- c("<100", "101-500", "501-1000", "1001-5000", "5001-10000", "10001-20000", "20001-50000", "50001-100000", "100001-300000", "300001-500000", ">500000")

result <- data %>%
  mutate(group = cut(SVLEN, breaks = intervals, labels = labels, right = FALSE)) %>%
  group_by(SVTYPE, group) %>%
  summarise(count = n())

# 如果存在组只有一个观测值的情况,可以考虑使用柱状图
ggplot(result, aes(x = group, y = count, fill = SVTYPE)) +
  geom_bar(stat = "identity", position = "dodge") +
  labs(x = "SV Length Group", y = "Count", title = "SV Length Distribution by SVTYPE", fill = "SVTYPE") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))



# 使用新的分组区间
intervals <- c(0, 100, 200, 300, 400, 500, 600, 700, 800, 900,1000,5000,10000,100000,300000)
labels <- c("0-100", "101-200", "201-300", "301-400", "401-500", "501-600", "601-700",
            "701-800","801-900","901-1000","1001-5000","5001-10000","10001-100000","100001-300000")


result <- data %>%
  mutate(group = cut(SVLEN, breaks = intervals, labels = labels, right = FALSE)) %>%
  group_by(SVTYPE, group) %>%
  summarise(count = n())

# 绘制折线图
ggplot(result, aes(x = group, y = count, group = SVTYPE, color = SVTYPE)) +
  geom_line() +
  geom_point() +
  labs(x = "SV Length Group", y = "Count", title = "SV Length Distribution by SVTYPE", color = "SVTYPE") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))




# 绘制折线图
p=ggplot(result, aes(x = group, y = count, group = SVTYPE, color = SVTYPE)) +
  geom_line(size = 1.2) +
  geom_point() +
  labs(x = "SV Length Group", y = "Count", title = "SV Length Distribution by SVTYPE", color = "SVTYPE") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
 #       axis.line = element_blank(),  # 去掉坐标轴实线
        panel.grid.major = element_blank(),  # 去掉主要网格线
        panel.grid.minor = element_blank()) +  # 去掉次要网格线
  scale_y_continuous(breaks = seq(0, max(result$count), by = 5000))  # 根据数据调整 y 轴刻度

ggsave("length_distribution1.png", plot = p, width = 15, height = 8, dpi = 300)

SV-dis
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,188评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,464评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,562评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,893评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,917评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,708评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,430评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,342评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,801评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,976评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,115评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,804评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,458评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,008评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,135评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,365评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,055评论 2 355

推荐阅读更多精彩内容