信息增益matlab实现

一般地,一个决策树包含一个根节点,若干个内部节点和若干个叶节点,叶结点对应决策结果,其他每个节点对应于一个属性测试,每个结点包含的样本集合根据属性测试的结果被划分到子节点中;根节点包含样本全集,从根节点到每个叶节点的路径对应了一个判定测试序列。决策树学习的目的是为了产生一颗泛化能力强,处理未见实例能力强的决策树。

信息熵
信息熵是度量样本集合纯度最常用的一种指标,假定当前样本集合D中第k类样本所占比例为pk(1,2,..|y|),则D的信息熵定义为


其中Ent(D)的值越小,则D的纯度越高。

信息增益
假定离散属性a有V个可能的取值a1,a2,...,aV,若使用a来对样本集D进行划分,则会产生V个分支节点,其中第v个分支节点包含了D中所有在属性a上取值为av的样本,记为Dv,根据信息熵的公式,在考虑到不同的分支节点所包含的样本数不同,给分支节点赋予权重|Dv|/|D|,即样本数越多的分支节点的影响越大,于是可计算出用属性a对样本集D进行划分所获得的”信息增益”。

一般而言,信息增益越大,则意味着使用属性a来进行划分所得的”纯度提升”越大。因此,我们可以用信息增益来进行决策树的划分属性选择。

实例分析
以下表的数据为例:其中有17个训练正例,学习目标是预测是不是好瓜的决策树。分类目标|Y|=2

信息熵计算得


上述实现代码为

close all;
clear all;
clc;
data = csvread('watermelon2.0.csv');
InforGain = gain(data);

function InforGain = gain(data) 
    [m, n] = size(data);
    InforGain = zeros(n-1,2);
    labels = data(:,n);
    for i=1:n
        tmp{i} = [];
        percen{i} = [];
        col = data(:,i);
        unicol = unique(col);
        %计算每一列有几类,并把每一类的信息熵和比例存储起来
        for j = 1:length(unicol)
            num = length(find(col==unicol(j)));
            pnum = length(find(col==unicol(j) & labels == 1));
            rate = pnum/num;
            if i==7
                rate = num/length(labels);
            end
            gain = -(rate*log2(rate)+(1-rate)*log2(1-rate));
            tmp{i}=[tmp{i} gain];
            percen{i}=[percen{i} num/length(col)];
        end
    end
    %整体信息熵
    InforEntropy = tmp{length(tmp)}(1);
    %将NAN转化为0
    for i = 1:length(tmp)
        tmp{i}(isnan(tmp{i})) = 0;
        %disp(tmp{i});
    end
    %求每一个属性列的信息增益
    for i = 1:length(percen)-1
        InforGain(i,:) = [i,roundn(InforEntropy-sum(tmp{i}.*percen{i}),-3)];
        disp(InforEntropy-sum(tmp{i}.*percen{i}));
    end

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,914评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,935评论 2 383
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,531评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,309评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,381评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,730评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,882评论 3 404
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,643评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,095评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,448评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,566评论 1 339
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,253评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,829评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,715评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,945评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,248评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,440评论 2 348

推荐阅读更多精彩内容

  • 决策树理论在决策树理论中,有这样一句话,“用较少的东西,照样可以做很好的事情。越是小的决策树,越优于大的决策树”。...
    制杖灶灶阅读 5,839评论 0 25
  • 机器学习 经验 数据 数据中产生模型model 的算法 学习算法 learning algorithm 数据集 d...
    时待吾阅读 3,968评论 0 3
  • 1、决策树算法 决策树(decision tree)又叫判定树,是基于树结构对样本属性进行分类的分类算法。以二分类...
    JasonJe阅读 2,767评论 0 22
  • 一.朴素贝叶斯 1.分类理论 朴素贝叶斯是一种基于贝叶斯定理和特征条件独立性假设的多分类的机器学习方法,所...
    wlj1107阅读 3,074评论 0 5
  • 积跬步以致千里,积怠惰以致深渊 注:本篇文章在整理时主要参考了 周志华 的《机器学习》。 主要内容 决策树是机器学...
    指尖上的魔术师阅读 1,379评论 0 5