tcmalloc

TCMalloc是 Google 开发的内存分配器,在不少项目中都有使用,例如在 Golang 中就使用了类似的算法进行内存分配。它具有现代化内存分配器的基本特征:对抗内存碎片、在多核处理器能够 scale。据称,它的内存分配速度是 glibc2.3 中实现的 malloc的数倍。Golang的内存管理就用了鼎鼎大名的 TCMalloc

总体结构

在tcmalloc内存管理的体系之中,一共有三个层次:ThreadCache、CentralCache、PageHeap。
分配内存和释放内存的时候都是按从前到后的顺序,在各个层次中去进行尝试。基本思想是:前面的层次分配内存失败,则从下一层分配一批补充上来;前面的层次释放了过多的内存,则回收一批到下一层次。

这几个层次从前到后,主要有这么几方面的变化:

线程私有性:ThreadCache,顾名思义,是每个线程一份的。理想情况下,每个线程的内存需求都在自己的ThreadCache里面完成,线程之间不需要竞争,非常高效。而CentralCache和PageHeap则是全局的;

内存分配粒度:在tcmalloc里面,有两种粒度的内存,object和span。span是连续page的内存,而object则是由span切成的小块。object的尺寸被预设了一些规格(class),比如16字节、32字节、等等,同一个span切出来的object都是相同的规格。object不大于256K,超大的内存将直接分配span来使用。ThreadCache和CentralCache都是管理object,而PageHeap管理的是span。

ThreadCache

比较简单,最主要的逻辑是维护一组FreeList,针对每一种class的object;

CentralCache

里面有多个CentralFreeList,针对每一种class的object。
CentralFreeList并不像ThreadCache那样直接维护object的链表,而是维护span的链表,每个span下面再挂一个由这个span切分出来的object的链。这样做便于在span内的object是否都已经free的情况下,将span整体回收给PageHeap(span.refcount_记录了被分配出去的object个数)。但是这样一来,每个回收回来的object都需要寻找自己所属的span,然后才能挂进freelist,过程会比较耗时。
所以CentralFreeList里面还搞了一个cache(tc_slots_),回收回来的一批object先往cache里面塞,塞不下了再回收进span的objects链。分配object给ThreadCache时也是先尝试在cache里面拿,没了再去span里面分配。
多少个object算做是一批?这都是预定义好的(称作batch_size,比如32个),不同的class可能有不同的值。ThreadCache向CentralCache分配和回收object时,都尽量以batch_size为一个批次。而为了cache的简单高效,如果批次个数不等于batch_size,则会绕过cache。
另外,CentralFreeList里的span链表其实是有两个:nonempty_和empty_,根据span的objects链是否有空闲,放入对应链表。这样就避免了在分配时去判断span是否为空,只需要在由空变非空、或者由非空变空时移动一下span。

PageHeap

维护了两个很重要的东西:page到span的映射关系,和空闲span的伙伴系统。

当应用free()一个地址的时候,怎么知道该把它对应的object放回哪里去呢?tcmalloc里面并没有针对object的控制结构,要解决这个问题,page到span的映射关系至关重要。地址值经过地址对齐,很容易知道它属于哪一个page。再通过page到span的映射关系就能知道object应该放到哪里。span.sizeclass记录了span被切分成的object属于哪一个class,那么属于这个span的object在free时就应该放到ThreadCache对应class的FreeList上面去;如果object需要放回CentralCache,直接把它挂到对应span的objects链表上即可。

page到span的映射关系通过radix tree来实现,逻辑上可以把它理解为一个大数组,以page的值作为偏移,就能访问到page所对应的节点。这个节点上面其实就是一个指针,指向这个page所对应的span(注意,可能有多个page指向同一个span,因为span的尺寸可能不止一个page)。
为减少查询radix tree的开销,PageHeap还维护了一个最近最常使用的若干个page到class(span.sizeclass)的对应关系cache。为了保持cache的效率,cache只提供64K个固定坑位,旧的对应关系会被新来的对应关系替换掉。

空闲span的伙伴系统为上层提供span的分配与回收。当需要的span没有空闲时,可以把更大尺寸的span拆小(如果大的span都没有了,则需要重新找kernel分配);当span回收时,又需要判断相邻的span是否空闲,以便将它们组合。判断相邻span还是要用到radix tree,radix tree就像一个大数组,很容易取到当前span前后相邻的span。
span的尺寸有从1个page到255个page的所有规格,所以span总是可以按任意尺寸进行拆分和组合(当然是page粒度的)。大于255个page的span单独归为一类,不作细分。

伙伴系统的freelist其实是有两个链,normal和returned,以区别活跃跟不活跃的内存。PageHeap并不会将内存释放给kernel,因为它们之间的交互都是针对一批连续page的,要想回收到整批的page,可能性很小。在PageHeap里面,多余的内存会放到returned里面去,跟normal做一下隔离。这样一来,normal的内存总是优先被使用,kernel倾向于一直保留它们。而returned的内存则不常被使用,kernel在内存不够的时候会优先将它们swap掉。
其实不用returned也能完成这样的事情,因为normal是个链表,每次分配回收总是作用在链表头上,那么链表内的span本身就按从热到冷的顺序排序了。链表尾部的span如果长期不被使用,不管是否移动到returned链,kernel都会倾向于将它们swap掉。不过,span进入returned时,tcmalloc还附加了一个操作,madvise(MADV_DONTNEED),试图告诉kernel这个内存已经不用了(kernel具体会怎么做,那就是另外一回事了)。
所以,在伙伴系统中分配span时,会有三个过程:优先在normal链中分配、尝试未果则在returned链中分配、还搞不定就向kernel去申请新的内存。

在PageHeap里面,还有一个PageHeapAllocator,专门用于分配各种控制结构的内存,比如span、ThreadCache、等。可见,在tcmalloc里面控制结构与object是分离的。而object自身并不需要额外的控制结构,当它被分配时,它的所有内存空间都服务于使用者;而当它空闲时,它的第一个8Byte空间被当作链表指针,链在各种freelist里面。

分配回收过程

再通过malloc和free两个过程把上述逻辑串起来看一看:

alloc

根据分配size,判断是小块内存还是大块内存(256K为界);
小块内存:
通过size得到对应的class;
先尝试在ThreadCache.list_[class]的FreeList里面分配,分配成功则直接返回;
尝试在CentralCache里面分配batch_size个object,其中一个用于返回,其他的都加进ThreadCache.list_[class];
拿到class对应的CentralFreeList;
尝试在CentralFreeList.tc_slots_[]里面分配(CentralFreeList.used_slots_是空闲slot游标);
尝试在CentralFreeList.nonempty_里面分配,尽量分配batch_size个object。但最后只要分配了多于一个object,即可返回;
如果CentralFreeList.nonempty_为空,则要向PageHeap去申请一个span。对应的class申请的span应该包含多少个连续page,这个也是预设好的。拿到span之后将其拆分成N个object,然后返回前面所需要的object;
PageHeap先从伙伴系统对应npages的span链表里面查找空闲的span(优先查normal链、然后returned链),有则直接返回;
在更大npages的span里面查找空闲的span(优先查normal链、然后returned链),有则将其拆小,并返回所需要的span;
向kernel申请若干个page的内存(可能大于npage),返回所需要的span,其他的span放回伙伴系统;
大块内存:
直接向PageHeap去申请一个刚好大于等于请求size的span。申请过程与小块内存走到这一步时的过程一致;

free

通过释放的ptr,在PageHeap维护的映射关系中,找到对应span的class(先尝试在cache里面找,没有再查radix tree,然后插入cache。cache里面自动淘汰老的项)。class为0代表ptr指向的是大块内存;
小块内存:
将ptr指向的内存释放到ThreadCache.list_[class]里面;
如果ThreadCache.list_[class]长度超过阈值(FreeList.length_>=FreeList.max_length_),或者ThreadCache的容量超过阈值(ThreadCache.size_>=ThreadCache.max_size_),则触发回收过程。两种情况分别针对class对应的FreeList,和ThreadCache下面的所有FreeList进行回收(具体的策略后续再讨论);
object被回收到CentralCache里面class对应的CentralFreeList上。先尝试batch_size个object的整块回收,CentralFreeList会试图将其释放到自己的cache里面去(tc_slots_);
如果cache装满,或者凑不满batch_size个整数的object,则单个回收,回收进其对应的span.objects。这个回收过程不必拿着object在CentralFreeList的span链表中逐个去寻找自己对应的span,而是通过PageHeap中的对应关系直接找到span;
如果span下面的object都已经回收了(refcount_减为0),则进一步将其释放回PageHeap;
在radix tree中找到span之前和这后的span,如果它们空闲且也在normal链上,则进行合并;
PageHeap将多余的span回收到其对应的returned链上,然后继续考虑span之间的合并(要求span都在returned链上)(具体策略后续再讨论);
大块内存:
ptr对应的直接就是一个span,直接将其释放回PageHeap即可;

回收策略

tcmalloc的主要数据结构基本上就是这些了。上面讨论的时候,有一个细节一直没深入:每一个层次在空闲量达到一定阈值的时候,会向下做一次释放。那么这个阈值该怎么定呢?

CentralCache => PageHeap

span从CentralCache回收到PageHeap的过程比较简单,只要一个span里面的object都空闲了,就将它回收到PageHeap;

normal => returned

在PageHeap中,span从normal链表回收到returned链表的过程则略复杂一些:
考虑到这个过程是很偏避的一个逻辑,span是否移到returned链表对整体性能而言差别并不会太大,所以尽量lazy。基本思路是,每当PageHeap回收到N个page的span时(这个过程中可能伴随着相当数目的span分配),触发一次normal到returned的回收,只回收一个span。
这个N值初始化为1G内存的page数,每次回收span到returned链之后,可能还会增加N值,但是最大不超过4G。
触发回收的过程也比较简单,每次进来轮询伙伴系统中的一个normal链表,将链尾的span回收即可。
这里面没有判断normal链是否应该被回收,如果回收了不该回收的span,后续的分配过程会把span从returned链里面捞回来。否则span将长期呆在returned链里面。

ThreadCache => CentralCache

ThreadCache是tcmalloc的核心,它里面的FreeList长度控制还是比较复杂的。
前面提到过,FreeList长度超过限额和ThreadCache容量超过限额,这两种情况下会触发object回收。考虑到应用程序的多样性,这两个限额不能是定死的,必需得自适应:有些线程对内存的需求可能远多于其他一些线程、有些线程可能总是在分配内存而另一些线程则总是释放内存(生产者消费者)、等等。

先来看ThreadCache的容量限额,其思想是:为每一个ThreadCache初始化一个比较小的限额,然后每当ThreadCache由于cache超限而触发object到CentralCache的回收时,就增大该ThreadCache的限额。有限额增大,就应该有限额回收。tcmalloc预设了一个所有ThreadCache的总容量,当ThreadCache需要增大容量时,如果总容量尚有余额,则使用这些余额。否则需要增大的容量就从其他线程的ThreadCache里面去收刮(具体从收刮哪个线程的容量,简单采用了轮询的方式)。这样一来,只需要在ThreadCache内存回收时做一些简单的处理,就能实现ThreadCache的容量的自适应:内存需求大的线程总是收刮别人的容量,而内存需求低的线程则总是被收刮。当然,收刮与被收刮并不是无节制的,会有一个最大值最小值的限制,比如128字节~4M。
到达ThreadCache的容量限额时,会对它下面的每一个FreeList进行回收,回收的数目是该Freelist.lowator_的一半。什么是lowator_呢?就是该Freelist在ThreadCache超限的两次回收周期之间内,FreeList的最小长度。也就是说,在上一个周期中,FreeList里面有lowator_个object是从未被用到的。通过这一历史信息,可以预估在下一次回收到来时,可能也有lowator_个object可能不会被用到。不过保守一点,只回收lowator_的一半。
回收过程其实只是对每一个FreeList的保守回收,回收完成之后ThreadCache的容量可能还会继续高于限额,不过随着这次回收,ThreadCache的容量限额也会被抬高。

下一个问题是单个FreeList的限额,tcmalloc采用慢启动策略,每个FreeList初始时长度限额为1。在限额为1~batch_size之间时,为慢启动状态。此时,不管是alloc遇到空FreeList、还是free遇到长度超限,都给限额加1。这样做可以给不常用或者使用很规律的object确定一个合适的限额,而如果object的使用抖动较大的话,应该给它一个更大的buffer。
如果限额增加达到batch_size,则慢启动状态结束。此时,如果alloc遇到空FreeList,限额会按batch_size的整数倍进行扩展。而如果free超限,则限额将按照batch_size的整数倍进行缩减。
alloc遇到空FreeList(说明FreeList的限额达不到线程的分配需求),应该不断增加限额,这个好理解。那么free超限的情况下,为什么慢启动状态下要增加限额,非慢启动状态则要减少限额呢?如果free总是超限,说明线程对object的free要多于alloc,线程之间对该object的分配回收很可能是不对称的。那么作为专职回收的那个线程,没必要给他留大的限额,因为它的分配需求很少。而慢启动状态下超限还给限额做加1递增,一方面可以应对抖动,另一方面递增限额的目的是使之能够达到batch_size(如果free确实远多于alloc话),从而在回收object时可以按batch_size批量回收。
FreeList限额超限的处理比较简单,直接回收batch_size个object即可(不足batch_size个,则有多少回收多少)。可见,处于慢启动状态下的FreeList限额超限,将导致FreeList被清空。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容