RBP AS生信流程(N)RBP与AS相关性

RBP = read.table("RBPexp.txt", row.names=1 ,header=T,sep="\t",check.names=F) 
AS = read.table("AS.txt", row.names=1 ,header=T,sep="\t",check.names=F)  
rownames(AS)=gsub("\\|","\\-",rownames(AS))
corFilter=0.6             
pvalueFilter=0.05
outTab=data.frame()
for(i in row.names(RBP)){
  if(sd(RBP[i,])>1){
      for(j in row.names(AS)){
         x=as.numeric(RBP[i,])
         y=as.numeric(AS[j,])
         corT=cor.test(x,y)
         cor=corT$estimate
         pvalue=corT$p.value
         if((cor>corFilter) & (pvalue<pvalueFilter)){
             outTab=rbind(outTab,cbind(SF=i,AS=j,cor,pvalue,Regulation="postive"))
         }
         if((cor< -corFilter) & (pvalue<pvalueFilter)){
             outTab=rbind(outTab,cbind(RBP=i,AS=j,cor,pvalue,Regulation="negative"))
         }
      }
    }
}
head(outTab)
write.table(file="corResult.txt",outTab,sep="\t",quote=F,row.names=F)      
library(openxlsx) #读取xlsx文件
library(tidyr) #separate函数
#第一步:整理出 基因|ID|剪接类型 
RI <- read.xlsx("RI.xlsx")
head(RI[,21])
RI$splicetype <- paste(RI$geneSymbol,RI$ID,"RI",sep = "|")
head(RI[,24])
RI2 <- RI[,c(21,22,24)]
RI2 <- RI2[,c(3,1,2)]
head(RI2)
RI2 <- separate(RI2,IncLevel1,into = c("HF1","HF2","HF3","HF4","HF5",
"HF6","HF7","HF8","HF9","HF10","HF11", "HF12","HF13","HF14","HF15"),
                sep = ",",
                remove =TRUE)
RI2 <- separate(RI2,IncLevel2,into = c("normal1","normal2","normal3","normal4",
                                       "normal5","normal6","normal7","normal8"),
                sep = ",",remove =TRUE)
head(RI2)
rownames(RI2) <- RI2$splicetype
RI2 <- RI2[,-1]
head(RI2)
SE <- read.xlsx("SE.xlsx")
head(SE[,21])
SE$splicetype <- paste(SE$geneSymbol,SE$ID,"SE",sep = "|")
head(SE[,24])
SE2 <- SE[,c(21,22,24)]
SE2 <- SE2[,c(3,1,2)]
head(SE2)
SE2 <- separate(SE2,IncLevel1,into = c("HF1","HF2","HF3","HF4","HF5",
"HF6","HF7","HF8","HF9","HF10","HF11", "HF12","HF13","HF14","HF15"),
                sep = ",",
                remove =TRUE)
SE2 <- separate(SE2,IncLevel2,into = c("normal1","normal2","normal3","normal4",
                                       "normal5","normal6","normal7","normal8"),
                sep = ",",remove =TRUE)
head(SE2)
rownames(SE2) <- SE2$splicetype
SE2 <- SE2[,-1]
head(SE2)
A3SS <- read.xlsx("A3SS.xlsx")
head(A3SS[,21])
A3SS$splicetype <- paste(A3SS$geneSymbol,A3SS$ID,"A3SS",sep = "|")
head(A3SS[,24])
A3SS2 <- A3SS[,c(21,22,24)]
A3SS2 <- A3SS2[,c(3,1,2)]
head(A3SS2)
A3SS2 <- separate(A3SS2,IncLevel1,into = c("HF1","HF2","HF3","HF4","HF5",
"HF6","HF7","HF8","HF9","HF10","HF11", "HF12","HF13","HF14","HF15"),
                sep = ",",
                remove =TRUE)
A3SS2 <- separate(A3SS2,IncLevel2,into = c("normal1","normal2","normal3","normal4",
                                       "normal5","normal6","normal7","normal8"),
                sep = ",",remove =TRUE)
head(A3SS2)
rownames(A3SS2) <- A3SS2$splicetype
A3SS2 <- A3SS2[,-1]
head(A3SS2)
A5SS <- read.xlsx("A5SS.xlsx")
head(A5SS[,21])
A5SS$splicetype <- paste(A5SS$geneSymbol,A5SS$ID,"A5SS",sep = "|")
head(A5SS[,24])
A5SS2 <- A5SS[,c(21,22,24)]
A5SS2 <- A5SS2[,c(3,1,2)]
head(A5SS2)
A5SS2 <- separate(A5SS2,IncLevel1,into = c("HF1","HF2","HF3","HF4","HF5",
"HF6","HF7","HF8","HF9","HF10","HF11", "HF12","HF13","HF14","HF15"),
                  sep = ",",
                  remove =TRUE)
A5SS2 <- separate(A5SS2,IncLevel2,into = c("normal1","normal2","normal3","normal4",
                                           "normal5","normal6","normal7","normal8"),
                  sep = ",",remove =TRUE)
head(A5SS2)
rownames(A5SS2) <- A5SS2$splicetype
A5SS2 <- A5SS2[,-1]
head(A5SS2)
MXE <- read.xlsx("MXE.xlsx") 
MXE$splicetype <- paste(MXE$geneSymbol,MXE$ID,"MXE",sep = "|")
head(MXE[,26])
MXE2 <- MXE[,c(23,24,26)]
MXE2 <- MXE2[,c(3,1,2)]
head(MXE2)
MXE2 <- separate(MXE2,IncLevel1,into = c("HF1","HF2","HF3","HF4",
"HF5","HF6","HF7","HF8","HF9","HF10","HF11", "HF12","HF13","HF14","HF15"),
                  sep = ",",
                  remove =TRUE)
MXE2 <- separate(MXE2,IncLevel2,into = c("normal1","normal2","normal3","normal4",
                                           "normal5","normal6","normal7","normal8"),
                  sep = ",",remove =TRUE)
head(MXE2)
rownames(MXE2) <- MXE2$splicetype
MXE2 <- MXE2[,-1]
head(MXE2)
allsplice <- rbind(RI2,SE2,A3SS2,A5SS2,MXE2)
#第二步:过滤掉在大于四分之一的样本中PSI值为缺失值的可变剪接事件
allsplice <- allsplice[apply(allsplice, 
                              1,                            
                              function(x)sum(x!="NA")>17),]  
#第三步:过滤波动太小的可变剪接事件
exp=as.matrix(allsplice)
mat=impute.knn(exp)
data=mat$data
data=data[rowMeans(data)>0.05,]
genes=c()
for(i in row.names(data)){
  if(sd(data[i,])>0.2){       
    genes=c(genes,i)
  }
}  
all=data[genes,]
all <- cbind(id=row.names(all),all)
write.table(all,file="AS.txt",sep="\t",row.names=F,quote=F)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352