R 数据可视化 01 | 聚类热图

一. 示例数据准备

下载:链接:https://pan.baidu.com/s/1_b8swSkWDqIHZi6UwKaspA
提取码:pll7

文件说明

示例数据,其中数据均为虚拟数据,与实际生物学过程无关

文件名:dataset_heatmap.txt

列分别为基因,cell1的5个重复样本,cell2的5个重复样本

行代表每个基因在所有样本的FPKM值

二. 环境需求

Rstudio:
如果系统中没有 Rstudio,先下载安装:https://www.rstudio.com/products/rstudio/download/#download

heatmaps 包:

如果没有安装该R包,执行以下代码:

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("heatmaps")

三. 绘制聚类热图

1. 聚类热图绘制
# 执行前设置====================================
# 清空暂存数据
rm(list=ls())
# 载入R包
library(pheatmap)
# 设置工作目录
setwd("E:/R/WorkSpace/baimoc/visualization")

# 整理数据集====================================
# 载入数据
dataset <- read.table('resource/dataset_heatmap.txt',header = TRUE, row.names = 1)
# 截取表达矩阵的一部分数据来绘制热图
exp_ds = dataset[c(1:60),c(1:10)]
# 构建样本分类数据
cell_list=c(rep('cell_1',5),
            rep('cell_2',5))
annotation_c <- data.frame(cell_list)
rownames(annotation_c) <- colnames(exp_ds)

# 绘制热图=====================================
pheatmap(exp_ds, #表达数据
         cluster_rows = T,#行聚类
         cluster_cols = T,#列聚类
         annotation_col =annotation_c, #样本分类数据
         annotation_legend=TRUE, # 显示样本分类
         show_rownames = T,# 显示行名
         show_colnames = T,# 显示列名
         scale = "row", #对行标准化
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100) # 热图基准颜色
)

2. 无分类信息热图
# 将绘制热图部分替换为下列代码
# 绘制热图=====================================
pheatmap(exp_ds, 
         show_rownames = T,
         show_colnames = T,
         scale = "row", 
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100)
)
3. 无聚类热图
# 将绘制热图部分替换为下列代码
pheatmap(exp_ds, #表达数据
         cluster_rows = F,
         cluster_cols = F,
         show_rownames = T,
         show_colnames = T,
         scale = "row", 
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100)
)
4. 分割聚类树热图
# 绘制热图=====================================
pheatmap(exp_ds, 
         show_rownames = T,
         show_colnames = T,
         scale = "row", 
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100),
         cutree_cols = 2,
         cutree_rows = 20
)
5. 多分组聚类热图
# 清空暂存数据
rm(list=ls())
# 载入R包
library(pheatmap)
# 设置工作目录
setwd("E:/R/WorkSpace/baimoc/visualization")

# 整理数据集====================================
# 参数'./resource/dataset.txt',表示载入E:/R/WorkSpace/baimoc/visualization/resource/dataset_heatmap.txt
dataset <- read.table('resource/dataset_heatmap.txt',header = TRUE, row.names = 1)
# 截取表达矩阵的一部分数据来绘制热图
exp_ds = dataset[c(1:60),c(1:10)]
# 构建样本分类数据
cell_type=c(rep('cell_1',5),
            rep('cell_2',5))
sample_calss=c(rep('normal',5),
               rep('cancer',5))
sample_type=c(rep('control',5),
               rep('case',5))
level = c(1:10)

annotation_c <- data.frame(cell_type, sample_calss, sample_type, level)
rownames(annotation_c) <- colnames(exp_ds)

gene_class=c(rep('good',30),
             rep('bad',30))
gene_type=c(rep('fat',20),
            rep('blood',20),
            rep('Immunology',20))
annotation_r <- data.frame(gene_class, gene_type)
rownames(annotation_r) <- rownames(exp_ds)
# 绘制热图=====================================
pheatmap(exp_ds, #表达数据
         cluster_rows = T,#行聚类
         cluster_cols = T,#列聚类
         annotation_col =annotation_c, #样本分类数据
         annotation_row = annotation_r,
         annotation_legend=TRUE, # 显示样本分类
         show_rownames = T,# 显示行名
         show_colnames = T,# 显示列名
         scale = "row", #对行标准化
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100), # 热图基准颜色
)
6. 分组调色
# 清空暂存数据
rm(list=ls())
# 载入R包
library(pheatmap)
# 设置工作目录
setwd("E:/R/WorkSpace/baimoc/visualization")

# 整理数据集====================================
# 参数'./resource/dataset.txt',表示载入E:/R/WorkSpace/baimoc/visualization/resource/dataset_heatmap.txt
dataset <- read.table('resource/dataset_heatmap.txt',header = TRUE, row.names = 1)
# 截取表达矩阵的一部分数据来绘制热图
exp_ds = dataset[c(1:60),c(1:10)]
# 构建样本分类数据
sample_calss=c(rep('Normal',5),
               rep('Cancer',5))

annotation_c <- data.frame(sample_calss)
rownames(annotation_c) <- colnames(exp_ds)

gene_type=c(rep('Fat',20),
            rep('Blood',20),
            rep('Immunology',20))
annotation_r <- data.frame(gene_type)
rownames(annotation_r) <- rownames(exp_ds)

annotation_colors = list(sample_calss=c(Normal='#F8EFBA', Cancer='#FD7272'),
                         gene_type=c(Fat='#f1f2f6', Blood='#ced6e0', Immunology='#57606f'))
# 绘制热图=====================================
pheatmap(exp_ds, #表达数据
         cluster_rows = T,#行聚类
         cluster_cols = T,#列聚类
         annotation_col =annotation_c, #样本分类数据
         annotation_row = annotation_r,
         annotation_colors = annotation_colors,
         annotation_legend=TRUE, # 显示样本分类
         show_rownames = T,# 显示行名
         show_colnames = T,# 显示列名
         scale = "row", #对行标准化
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100), # 热图基准颜色
)
7. 显示文本
# 绘制热图=====================================
pheatmap(exp_ds, 
         show_rownames = T,
         show_colnames = T,
         scale = "row", 
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100),
         display_numbers = T, # 显示数值
         fontsize_number = 8, # 设置字体大小
         number_color = '#4a4a4a', #设置颜色
         number_format = '%.2f' # 设置显示格式
)
8. 去除描边
pheatmap(exp_ds, #表达数据
         show_rownames = T,# 显示行名
         show_colnames = T,# 显示列名
         scale = "row", #对行标准化
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100), # 热图基准颜色
         border_color = 'NA',
)
9. 字体相关
pheatmap(exp_ds, #表达数据
         show_rownames = T,# 显示行名
         show_colnames = T,# 显示列名
         scale = "row", #对行标准化
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100), # 热图基准颜色
         fontsize = 10, # 全局字体大小,会被后边设置所覆盖
         fontsize_row = 8, # 行字体大小
         fontsize_col = 12, # 列字体大小
         angle_col = 45, # 设置列偏转角度,可选 270, 0, 45, 90, 315,
         gaps_row = T
)
10. 调整聚类树高
pheatmap(exp_ds, 
         show_rownames = T,
         show_colnames = T,
         scale = "row", 
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100),
         treeheight_row = 50,
         treeheight_col = 30
)
11. 聚类方法选择
pheatmap(exp_ds, 
         show_rownames = T,
         show_colnames = T,
         scale = "row", 
         color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100),
         clustering_distance_rows = 'euclidean', # 计算聚类间距的算法,可选'correlation', 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski'
         clustering_method = 'complete', # 聚类方法, 可选'ward', 'ward.D', 'ward.D2', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'
)

四. 保存为图片

  • 这里可导出像素图和PDF,也可拷贝到PS调整

  • 选择合适的文件格式,调整合适长宽,印刷或投稿选PDF,TIFF,EPS就好

  • 文件默认存储在刚刚设置的工作目录里

五. 详细参数设置说明

1. 设置工作目录
setwd("E:/R/WorkSpace/baimoc/visualization")

在R的执行过程中,为了方便,需要指定一个获取文件和输出文件所在的目录,这样就不需要每次设置全路径,只需要指定相对目录

setwd("E:/R/WorkSpace/baimoc/visualization")的意思就是设置工作目录为E:/R/WorkSpace/baimoc/visualization

2. 载入数据
dataset <- read.table('resource/dataset_heatmap.txt',header = TRUE, row.names = 1)

因为工作目录已经设置,如果要获取E:/R/WorkSpace/baimoc/visualization/resource/dataset_heatmap.txt文件,那么就只需要设置相对路径resource/dataset_heatmap.txt

对于header = TRUE, row.names = 1代表读取文件表头,设置第一列为行名

3. 获取数据子集
# 截取表达矩阵的一部分数据来绘制热图
exp_ds = dataset[c(1:60),c(1:10)]

原始数据:

如果获取前两个基因和cell1与cell2的前两个样本,只需要执行

exp_ds = dataset[c(1:5),c(1:3,6:8)]
4. 样本分类数据
# 构建样本分类数据
cell_list=c(rep('cell_1',5),
            rep('cell_2',5))
annotation_c <- data.frame(cell_list)
rownames(annotation_c) <- colnames(exp_ds)

这段代码目的是构建分类名与原始数据的列名的对应关系

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 197,966评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,170评论 2 375
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 144,909评论 0 327
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,959评论 1 268
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,851评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,583评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,956评论 3 388
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,590评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,878评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,892评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,719评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,501评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,957评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,124评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,440评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,003评论 2 343
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,211评论 2 339

推荐阅读更多精彩内容