动手学深度学习(二)——正则化(gluon)

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

注:本文为李沐大神的《动手学深度学习》的课程笔记!

高维线性回归数据集

# 导入mxnet
import random
import mxnet as mx

# 设置随机种子
random.seed(2)
mx.random.seed(2)

from mxnet import gluon
from mxnet import ndarray as nd
from mxnet import autograd


# 训练数据数量
num_train = 20

# 测试数据数量
num_test = 100

# 输入数据特征维度
num_inputs = 200

# 实际权重
true_w = nd.ones((num_inputs, 1)) * 0.01

# 实际偏置
true_b = 0.05

# 生成数据
X = nd.random_normal(shape=(num_train + num_test, num_inputs))
y = nd.dot(X, true_w) + true_b

# 添加随机噪声
y += 0.01 * nd.random_normal(shape=y.shape)

# 训练数据和测试数据
X_train, X_test = X[:num_train, :], X[num_train:, :]
y_train, y_test = y[:num_train], y[num_train:]

定义训练和测试

%matplotlib inline
import matplotlib as mpl
mpl.rcParams['figure.dpi']= 120
import matplotlib.pyplot as plt
import numpy as np

# 批数据大小
batch_size = 1

# 创建数据集
dataset_train = gluon.data.ArrayDataset(X_train, y_train)

# 读取数据
data_iter = gluon.data.DataLoader(dataset_train, batch_size, shuffle=True)

# 损失函数
square_loss = gluon.loss.L2Loss()

# 测试
def test(net, X, y):
    return square_loss(net(X), y).mean().asscalar()

# 训练
def train(weight_decay):
    # 定义训练的迭代周期
    epochs = 10
    # 定义学习率
    learning_rate = 0.005
    # 定义网络
    net = gluon.nn.Sequential()
    with net.name_scope():
        net.add(gluon.nn.Dense(1))
    #net.collect_params().initialize(mx.init.Normal(sigma=1))
    # 初始化网络参数
    net.initialize(mx.init.Normal(sigma=1))
    # SGD训练, 使用权重衰减代替L2正则化
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': learning_rate, 'wd': weight_decay})
    # 训练损失
    train_loss = []
    # 测试损失
    test_loss = []
    for epoch in range(epochs):
        for data, label in data_iter:
            # 记录梯度
            with autograd.record():
                # 计算预测值
                output = net(data)
                # 计算损失
                loss = square_loss(output, label)
            # 反向传播
            loss.backward()
            # 更新权重
            trainer.step(batch_size)
            # 训练损失
            train_loss.append(test(net, X_train, y_train))
            # 测试损失
            test_loss.append(test(net, X_test, y_test))
    # 绘制图像
    plt.plot(train_loss)
    plt.plot(test_loss)
    plt.legend(['train','test'])
    plt.show()
    return ('learned w[:10]:', net[0].weight.data()[:,:10], '\nlearned b:', net[0].bias.data())

训练模型并观察过拟合

train(0)
Overfitting
('learned w[:10]:', 
 [[ 1.04817235 -0.02568591  0.86764944  0.29322273  0.01006198 -0.56152564
    0.38436413 -0.3084037  -2.32450151  0.03733355]]
 <NDArray 1x10 @cpu(0)>, '\nlearned b:', 
 [ 0.79914868]
 <NDArray 1 @cpu(0)>)

使用Gluon的正则化

train(5)
Normal
('learned w[:10]:', 
 [[ 0.00107634 -0.00052574  0.00450234 -0.00110544 -0.00683913 -0.00181657
   -0.00530634  0.00512847 -0.00742552 -0.00058494]]
 <NDArray 1x10 @cpu(0)>, '\nlearned b:', 
 [ 0.00449433]
 <NDArray 1 @cpu(0)>)

可用权重衰减代替L2正则化的原因

推导

注:图片来自Gluon社区。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,376评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,126评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,966评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,432评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,519评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,792评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,933评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,701评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,143评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,488评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,626评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,292评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,896评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,742评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,324评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,494评论 2 348

推荐阅读更多精彩内容