反向遗传学是从病毒基因组的全长cDNA拷贝中产生病毒,被称为“感染性克隆”,并且是现代病毒学中最强大的遗传工具之一。 重组DNA技术使我们能够在分子水平上分析和操作基因组。然而,对于非逆转录RNA病毒,基因组在复制过程中不会进入DNA阶段,直接操作脆弱的RNA基因是一项挑战。流感病毒的基因组分段且为负链,所以流感病毒的遗传操作更加苛刻。
为了作为启动转录和复制的功能模板,流感病毒RNA(vRNA)必须通过聚合酶复合物转录为正义mRNA,其中包括三种病毒聚合酶(PB2,PB1和PA) 和核蛋白(NP)。流感病毒具有由8个RNA基因区段组成的基因组,必须对其进行表达和包装以完成病毒复制周期。
流感病毒的反向遗传系统于1999年由两个不同的研究小组建立,依靠细胞内RNA聚合酶I(PolⅠ)合成流感病毒RNA。RNA聚合酶I是一种丰富的核酶,可转录核糖体RNA。RNA聚合酶I在确定的启动子和终止子序列处起始并终止转录,并且所得的转录物在5'或3'末端不含有额外的核苷酸。因此,这种酶非常适合在细胞核中产生流感病毒vRNA。虽然流感病毒拯救系统在不断完善提高,但使用RNA聚合酶I系统合成vRNA的基本概念仍然相同。
目前,流感病毒的重新合成主要通过用8-12个质粒共转染细胞来实现。其中,8质粒系统拯救甲型流感病毒最为广泛。8种质粒含有编码RNA聚合酶I可识别的启动子和终止子,在启动子和终止子之间分别含有每条流感病毒分段基因组的cDNA。8质粒系统的蛋白质由PolⅡ转录翻译,且此系统至少需要表达4种蛋白(PA, PB1, PB2和NP)。一般的8质粒系统可转录流感病毒的8个基因,翻译流感病毒的10个蛋白。翻译完整的流感病毒蛋白,能够提高流感病毒的拯救效率。
protocol:
克隆8质粒:
使用含人类polⅠ序列的载体作为拯救系统的表达载体,构建8质粒拯救系统。此载体为双向双表达载体,在polⅡ启动子(CMV)和终止序列(SV40)之间反向插入了人类polⅠ启动子和鼠polⅠ终止序列。将流感病毒的8个cDNA(包括UTR和ORF)插入该载体,转染细胞后,polⅠ负责合成流感病毒单股负链RNA,polⅡ负责转录流感病毒正链mRNA,随后翻译流感病毒蛋白。该质粒较特殊,在插入片段的前后均有polyA尾,无法用通用引物测序,需要使用每个基因的特异性引物进行测序。
拯救甲型流感病毒:
1. 将HEK-293T接种到6孔板中,培养24小时至少95% confluence。
注:因转染会加入大量的有毒性转染试剂,故细胞状态需要良好、数量需求较多。由于人类polⅠ启动子的物种特异性,只能使用具有高转染效率的灵长类动物来源的细胞(293T或Vero细胞)进行流感病毒的包装。一般来说,293T拯救效果强于Vero。由于MDCK细胞支持许多流感病毒的生长,并且可以在与293T细胞相同的培养基中生长,因此共培养的293T-MDCK细胞(1:1)可用于提高某些流感病毒株的拯救效率。
2. 在DMEM培养基(不含FBS)中,每个质粒1μg,8个质粒共计8μg,与转染试剂混合,室温下静止15-30分钟。
注:质粒:脂质体=1:3;质粒:PEI=1:4。DMEM可换成Opti-MEM。
3. 更换HEK-293T的DMEM培养基(含FBS),将质粒-转染试剂复合体缓缓滴入6孔板中。
4. 将细胞放于含5%二氧化碳的37℃培养箱中培养。
注:35℃环境也可。
5. 转染后24小时,加入终浓度为1μg/ml的TPCK处理过的胰酶,继续培养。
注:TPCK胰酶用于切割流感病毒的HA蛋白,使病毒具有感染性。某些病毒株可不用此胰酶。
6. 转染后48小时或72小时后,收集HEK-293T细胞上清液。此时,流感病毒即在上清液中,但是滴度极低。
注:反复冻融3次细胞有助于细胞内的流感病毒释放。
7. 将收集的上清液滴入MDCK细胞中,流感病毒感染MDCK细胞以扩增。
注:同样需要加入终浓度为1μg/ml的TPCK处理过的胰酶。用鸡胚培养流感病毒效果极佳:接种到9-11天龄的SPF鸡胚胎中。孵育48小时后收获羊膜尿囊液。感染性病毒的存在可通过血凝素(HA)试验确认。
8. 感染后48小时,收集MDCK细胞上清液,进行plaque assay进行病毒滴度的测定。
注:一般测出的滴度处于5x10^6Pfu/ml左右。若想增加流感病毒滴度,继续将病毒感染MDCK以进行扩增。
9. 应通过对8个病毒基因片段中的每一个进行测序来确认拯救病毒的身份。
10. 病毒液可在4℃存放数周。-80℃可长期储存。
参考资料: