参数的调整

前言

超级APP功能越来越全,非超级APP的DAU都在下降,当失去增长红利之后,精细化迭代和精细化运营将成为必然选择。产品的工作的重点也需要从前端和交互的修改,转移到策略的制定。而产品策略在实现层,最终是以算法公式的形式输出的。

一个成熟的策略系统,会涉及多种重要的因素。如何保证这些策略公式在复杂的运算中发挥自己应有的作用,如何保证不同的数值能在同一纬度计算,这就涉及很多参数调整的策略技巧。

调整参数的目的

首先在调整参数的时候,前提是明确调整参数的目的。针对具体的目的,使用对应的工具,然后才能达成具体的目的。对调整参数的目的简单做了一些总结,具体如下:

归一化处理

调整因素的影响力

信息论处理:热门降权和时间衰减降权

调整变化曲线

设定变化界限

归一化处理

归一化处理,通过处理让不同因素在一个范围内进行比较。举个例子,如果要比较专栏的影响力,需要综合考虑阅读量、点赞量、发表文章量这三个因素,直接相加显然是不可行,因为阅读量数量是点赞数的至少10倍,而点赞数也是发表文章数的几十倍。要让不同因素在一个变化范围内,这个时候就需要对进行归一化处理。

最简单粗暴的归一化方式,就是直接除以数据中的最大值,那么所有值都在0~1之间,并保留原有的变化性质。即:

当然这样的处理方法也会有问题,比如受到极值影响比较大。而且如果大部分分值比极值低很大的数量级,则低分值将没有区分度,以阅读量为例,如果最大阅读量为十万+,而大部分专栏文章阅读量集中在500左右。这样直接除以极大值显然是不明智的。这个时候最好在处理前对数值进行调整。在之前的文章《神奇的对数》中提到的对数处理是个比较好用的方法:

这样既保证了所有的数值在0~1之间,同时极值对最终分值的决定性影响也没那么大。

调整因素的影响力

调整影响力的比较通用的办法有两种,加数值,乘以数值。

加数值能解决冷启动遇到的新内容权重过低的问题,比如,如果知乎答案完全按照赞同排序,则新发布的知乎答案,一开始在下面,不利于被更多人看见,如果新发布的内容自带20个赞参与排序,则能解决这一问题。

乘以数值能解决数值重要性的问题,如果希望某一因素在总排序中占据更重要的位置,则可以用乘法处理,比如,还是知乎内容排序的例子,如果完全按照赞同排序,要提高文章的排序权重,可以直接乘以某个系数。

信息论处理:热门降权、时间衰减降权、置信度提权

一个信息出现概率越小,信息量越大,如果一个信息越常见,包含的信息越小。这个在之前文章《搜索的原理》中提到的一个基础观点。在实际的策略公式中,从信息论的角度去考虑就能快速的理解策略,让最终结果更加符合预期。

热门降权以经典的图书推荐为例进行介绍。在图书推荐中买了的人还买了的策略中,有一个著名的哈利波特问题,因为哈利波特销量过高,几乎所有的图书都和它有关系。怎么处理呢?一个办法是用销量做流行度处理,降低流行度特别高的商品在排序中的得分:

时间衰减降权,顾名思义,让过去的信息权重更低,最近的信息权重更高。行为具有连续性,最新的行为包含了更大的信息量。在处理的时候也可以使用上面的数学形式,让更远的时间分数衰减更大:

置信度提权,是基于数据量越大信息越靠谱,在处理平均值,打分等的参数时候有比较好的应用。比如,在计算一个电影的排序的时候,在考虑多个因素中包含了电影观众打分,这儿时候应该是打分的人越多,电影打分的权重越高。

调整变化的曲线

一般而言未经加工的数值在策略中很难直接应用,比如:知乎点赞/阅读的比率。好的文章高一些,差的文章低一些。变化范围特别小。希望整体数值变化范围不变的情况下,怎么加大区分度?这个时候可以用一些曲线的性质。开方是个例子,0.25变为0.5,0.01变为0.1,而1处理后还是1:

同样的如果分值都集中在很高的情况下,为了加大区分度,也可以用开方的逆运算。0.8处理后变为0.64,0.5处理后变为0.25,1处理后还是1:

设定变化的界限

防止一些极值产生对于计算的影响,设定变化界限也是常用的方法。比较暴力的做法是设定最大值,比如:当在阅读量计算中,阅读量数值大于10万,只取十万,防止大值的影响。

还有一些比较柔性的做法,比如用有界函数进行处理:

或者直接用之前文章《神奇的对数》中提到的对数也是不错的做法,会让大值影响减少:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,717评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,501评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,311评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,417评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,500评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,538评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,557评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,310评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,759评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,065评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,233评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,909评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,548评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,172评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,420评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,103评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,098评论 2 352

推荐阅读更多精彩内容