Spark不同Cluster Manager下的数据本地性表现

一. 概述

Spark中的数据本地性分为两种

  • executor 层面的数据本地性
  • task 层面的数据本地性

在两种本地性中,task层面的数据本地性是由Spark本身决定的,而executor的分发则是Cluter Manager控制的,因此下文主要描述在不同Cluster Manager中的executor分发机制。

  1. Spark Standalone
    Standalone提供了两种executor的分发模式。
    由参数spark.deploy.spreadOut控制,默认为true,将会把executor分配到尽可能多的worker上,因此通常都能提供非常良好的数据本地性。

    如果设置为false(不建议),会将executor优先分配到一台机器中,能提供更高的机器使用率。

  2. Spark on Yarn
    在Spark on Yarn方式下,如果启用了Dynamic Allocation并设置spark.dynamicAllocation.initialExecutors为一个较低的值(例如0)。则在pending task申请executor时,就会判断任务的数据本地性,并且在有数据的节点上启动executor。

  3. Spark on Mesos
    mesos会先offer给spark一个空闲的slave,spark会在上面启动executor,直到slave占满,mesos会再发一个新的offer过来。这种做法类似于standalone关闭spreadOut的效果,因此会导致某些节点load非常高,而一些节点异常空闲情况。
    解决方式有2个:

    1. 修改spark源码解决这个问题(接收到一个offer的时候只启动一个executor),在spark2.0的基础上只需要改动MesosCoarseGrainedSchedulerBackendbuildMesosTasks那段代码即可。
    2. 配合docker,marathon解决。

修改mesos调度前:

修改mesos调度前

修改mesos调度后:
修改mesos调度后

观察到本地性有较大的提升,运行时间缩短了25%左右。

同时离线任务运行时间波动减少,趋于稳定


这里写图片描述

二. 结语

通过上述来看,目前Spark on Yarn + Dynamic Allocation的方式在executor的数据本地性上有着一定的优势。

分布式计算的瓶颈往往出现在IO上,因此良好的数据本地性能提高程序的整体运行速度。在机器较多的集群中,为了拥有更好的数据本地性,最简单的一种方式就是通过启动更多的executor来实现。

例如需要一个<4 cores, 20G RAM>的Spark Application。如果只启动一个executor,那么只会运行在一台节点上,其他机器的数据则需要通过网络IO来获取。如果启动4个executor,每个executor使用<1 cores,5G RAM>,那么executor将能分布到更多的节点上,获取更好的数据本地性。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 198,154评论 5 464
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,252评论 2 375
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 145,107评论 0 327
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,985评论 1 268
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,905评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,256评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,978评论 3 388
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,611评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,891评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,910评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,736评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,516评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,995评论 3 301
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,132评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,447评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,034评论 2 343
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,242评论 2 339

推荐阅读更多精彩内容