2. 支持向量机(SVM)和它的运算速率问题

SVM图例
SVM Planes

对于SVM来说,数据点被视为p维向量,而我们试图用(p-1)维超平面分开这些点,即创造所谓的“线性分割器”。为此,我们要选择能够让到每边最近的数据点的距离最大化的超平面。如果存在这样的超平面,则称为最大间隔超平面,而其定义的线性分类器被称为最大间隔分类器,或者叫做最佳稳定性感知器。SVM的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。

(A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples.)

遇到线性不可分的情况时,需要使用Kernal投射到高维。其实Kernal函数和SVM可以理解为两个不同的东西,SVM只不过是用到了kernel trick把有些线性不可分的情况变得在高维线性可分(理想上),任何可以用内积计算距离的分类器或者其他的都可以用kernel trick。Kernal函数的好处是把低维空间投影到高维,有些核函数投影到有限维,比如多项式核,有些投影到无穷维,比如RBF。但这只是增大的线性可分的可能性,并不能保证。所以还要进入松弛系数(slash coefficients) 如果形象的理解,就是如果你有N个点,如果N个点分布在N维空间里,那他们肯定是线性可分的(比如2个点在平面上)。所以SVM用kenel的目的就在于此。

参考资料:

http://blog.csdn.net/v_july_v/article/details/7624837

http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

===========================

一个邮件识别,在Python中运用SVM。运用了几个不同的kernal:linear, poly, rbf,sigmoid,修改了几次数据集大小。

1、1%集,clf = SVC(kernel="linear"):88%正确率,16秒

2、20%集,clf = SVC(kernel="linear"):95%正确率,64秒

3、全集,clf = SVC(kernel="linear"):98%正确率,308秒

1、1%集,clf = SVC(kernel="rbf"):62%正确率,1.8秒

2、20%集,clf = SVC(kernel="linear"):49%正确率,13秒

3、20%集,clf = SVC(kernel="rbf", C = 1000):  94%正确率,11秒

4、20%集,clf = SVC(kernel="rbf", C = 10000):  95%正确率,8秒

5、全集,clf = SVC(kernel="rbf", C = 10000):  99%正确率

在计算效率方面,SVM是通过QP来求解的。基于libsvm的实现时间复杂度在O(d * n^2) ~ O(d * n^3)之间,变化取决于如何使用cache. 所以如果我们内存足够的话那么可以调大cache_size来加快计算速度。其中d表示feature大小,如果数据集合比较稀疏的话,那么可以认为d是non-zero的feature平均数量。libsvm处理数据集合大小最好不要超过10k. 相比之下,liblinear的效率则要好得多,可以很容易训练million级别的数据集合。

kernel函数支持1.linear 2. polynomial 3. rbf 4. sigmoid(tanh). 对于unbalanced的问题,sklearn实现允许指定 1.class_weight 2.sample_weight. 其中class_weight表示每个class对应的权重,这个在构造classifier时候就需要设置。如果不确定的话就设置成为'auto'。sample_weight则表示每个实例对应的权重,这个可以在调用训练方法fit的时候传入。另外一个比较重要的参数是C(惩罚代价),通常来说设置成为1.0就够了。但是如果数据中太多噪音的话那么最好减小一些。

参数方面,可使用GridCV,一种几乎能自动查找最优参数调整的优秀 sklearn 工具。

===========================

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,718评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,683评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,207评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,755评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,862评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,050评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,136评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,882评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,330评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,651评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,789评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,477评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,135评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,864评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,099评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,598评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,697评论 2 351

推荐阅读更多精彩内容