RFM 客户价值分析

背景:电商企业沉积的客户交易数据繁杂。需要挖掘出不同用户群体的特征与价值,再针对不同群体提供不同的营销策略。
数据:某电商企业客户近期购买的数据。包含客户基本信息,商品信息,交易记录。
目标:分析客户交易数据,挖掘出高价值客户,进行精准营销,降低营销成本。


【一】分析思路

RFM模型:是一种衡量客户价值和客户创利能力的重要工具和手段。该机械模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱三项指标来描述该客户的价值状况。

三要素

RFM分析前提:
1.最近有过交易行为的客户,再次发生交易的可能性要高于最近买有交易行为的客户;
2.交易频率较高的客户比交易频率较低的客户,更有可能再次发生交易行为;
3.过去所有交易总金额较多的客户,比交易总金额较少的客户,更有消费积极性。

RFM模型

根据划分后的情况,可以进行精确营销,以提高


【二】数据处理

import numpy
import pandas as pd
 data = pd.read_csv('D:\Transaction\2017\data0023.csv'

提取数据后处理三要素:
1>.近度(R):最后购买时间至观察时间
2>.频度(R):时间内用户购买的次数
3>.额度(R):时间内客户总共消费的金额

import time
data['DateDiff'] = pandas.to_datetime('today') - data['DealDateTime']

R = data.groupby(by=['CustomerID'])['DateDiff'].agg({'RecencyAgg': numpy.min})

F = data.groupby(by=['CustomerID'])['OrderID'].agg({'FrequencyAgg': numpy.size})

M = data.groupby(by=['CustomerID'])['Sales'].agg('MonetaryAgg': numpy.sum})



【三】Spss分析


【三】python实现

1> 建模数据处理

单独提取数据表中recency,frequencymonetary和monetary三个字段进行聚类。首先转化为数组。

 #转化为数组
rfm_new = np.array(rfm[['frequency','monetary','recency']])
 #设置随机数
seed=9
2> 建立K—Means模型
from sklearn.cluster import KMeans
clf=KMeans(n_clusters=8,random_state=seed)
clf=clf.fit(rfm_new)
3> RFM拟合

完成后查看K—Means聚类后的8个质心点的值

clf.cluster_centers_

在原始数据表中对每个用户进行聚类结果标记。这样我们就可以知道每个用户ID在RFM模型中所属的类别。

#对原数据表进行类别标记
rfm['label']= clf.labels_

#查看标记后的数据
rfm.head()

#计算每个类别的数据量
c=rfm["label"].value_counts()
image.png

【四】总结&思考

http://bluewhale.cc/2018-02-11/use-python-to-create-rfm-model.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容