VGG

【深度学习】VGGNet原理解析及实现
VGGNet由牛津大学的视觉几何组(Visual Geometry Group)和Google DeepMind公司的研究员共同提出,是ILSVRC-2014中定位任务第一名和分类任务第二名。其突出贡献在于证明使用很小的卷积(3*3),增加网络深度可以有效提升模型的效果,而且VGGNet对其他数据集具有很好的泛化能力。到目前为止,VGGNet依然经常被用来提取图像特征。

VGGNet探索了CNN的深度及其性能之间的关系,通过反复堆叠3*3的小型卷积核和2*2的最大池化层,VGGNet成功的构筑了16-19层深的CNN。

一、VGGNet结构

VGGNet有A-E七种结构,从A-E网络逐步变深,但是参数量并没有增长很多(图6-7),原因为:参数量主要消耗在最后3个全连接层,而前面的卷积层虽然层数多,但消耗的参数量不大。不过,卷积层的训练比较耗时,因为其计算量大。

其中,D和E是常说的VGGNet-16和VGGNet-19。C很有意思,相比于B多了几个1*1的卷积层,1*1卷积的意义在于线性变换,而输入的通道数和输出的通道数不变,没有发生降维。

VGG的性能:

VGGNet网络特点:

  1. VGGNet拥有5段卷积,每段卷积内有2-3个卷积层,同时每段尾部都会连接一个最大池化层(用来缩小图片)。

  2. 每段内的卷积核数量一样,越后边的段内卷积核数量越多,依次为:64-128-256-512-512

  3. 越深的网络效果越好。(图6-9)

  4. LRN层作用不大(作者结论)

  5. 11的卷积也是很有效的,但是没有33的卷积好,大一些的卷积核可以学习更大的空间特征。

为什么一个段内有多个3*3的卷积层堆叠?

这是个非常有用的设计。如下图所示,2个33的卷积层串联相当于1个55的卷积层,即一个像素会跟周围55的像素产生关联,可以说感受野大小为55。而3个33的卷积层相当于1个77的卷积层。并且,两个33的卷积层的参数比1个55的更少,前者为233=18,后者为155=25。

更重要的是,2个33的卷积层比1个55的卷积层有更多的非线性变换(前者可使用2次ReLu函数,后者只有两次),这使得CNN对特征的学习能力更强。

所以3*3的卷积层堆叠的优点为:

(1)参数量更小

(2)小的卷积层比大的有更多的非线性变换,使得CNN对特征的学习能力更强。

与其他网络对比:

与ILSVRC-2012和ILSVRC-2013最好结果相比,VGGNet优势很大。与GoogLeNet对比,虽然7个网络集成效果不如GoogLeNet,但是单一网络测试误差好一些,而且只用2个网络集成效果与GoogLeNet的7网络集成差不多。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 225,928评论 6 523
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 97,032评论 3 410
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 173,382评论 0 370
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 61,580评论 1 304
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,558评论 6 403
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 54,018评论 1 316
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 42,261评论 3 432
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 41,328评论 0 281
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,858评论 1 328
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,843评论 3 351
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,954评论 1 358
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,565评论 5 352
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 43,251评论 3 342
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,677评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,834评论 1 278
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,558评论 3 383
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 47,033评论 2 368

推荐阅读更多精彩内容