单细胞预测doublets软件

在做单细胞测序时,常常出现一定比例的doublets,可以通过DoubletFinder去除。


image.png

DoubletFinder 的4个步骤:

(1) 从现有单细胞数据中人为产生doublets
(2) 将人工产生的doublets与真实细胞混合在一起
(3) 用PCA降维或者用PCA距离矩阵寻找每个单元的artificial k
最近邻居(pANN)的比例;
(4) 根据预期的doublets数量进行排序和计算pANN阈值;

devtools::install_github('chris-mcginnis-ucsf/DoubletFinder')

doublets 与Seurat无缝衔接:V3 版本的Seurat用下面的函数
'paramSweep_v3' and 'doubletFinder_v3'

Seurat V2版本:

## Pre-process Seurat object -------------------------------------------------------------------------------------------------
seu_kidney <- CreateSeuratObject(kidney.data)
seu_kidney <- NormalizeData(seu_kidney)
seu_kidney <- ScaleData(seu_kidney, vars.to.regress = "nUMI")
seu_kidney <- FindVariableGenes(seu_kidney, x.low.cutoff = 0.0125, y.cutoff = 0.25, do.plot=FALSE)
seu_kidney <- RunPCA(seu_kidney, pc.genes = seu_kidney@var.genes, pcs.print = 0)
seu_kidney <- RunTSNE(seu_kidney, dims.use = 1:10, verbose=TRUE)

## pK Identification ---------------------------------------------------------------------------------------------------------
sweep.res.list_kidney <- paramSweep(seu_kidney, PCs = 1:10)
sweep.stats_kidney <- summarizeSweep(sweep.res.list_kidney, GT = FALSE)
bcmvn_kidney <- find.pK(sweep.stats_kidney)

## Homotypic Doublet Proportion Estimate -------------------------------------------------------------------------------------
homotypic.prop <- modelHomotypic(annotations)           ## ex: annotations <- seu_kidney@meta.data$ClusteringResults
nExp_poi <- round(0.075*length(seu_kidney@cell.names))  ## Assuming 7.5% doublet formation rate - tailor for your dataset
nExp_poi.adj <- round(nExp_poi*(1-homotypic.prop))

## Run DoubletFinder with varying classification stringencies ----------------------------------------------------------------
seu_kidney <- doubletFinder(seu_kidney, PCs = 1:10, pN = 0.25, pK = 0.09, nExp = nExp_poi, reuse.pANN = FALSE)
seu_kidney <- doubletFinder(seu_kidney, PCs = 1:10, pN = 0.25, pK = 0.09, nExp = nExp_poi.adj, reuse.pANN = "pANN_0.25_0.09_913")

## Plot results --------------------------------------------------------------------------------------------------------------
seu_kidney@meta.data[,"DF_hi.lo"] <- seu_kidney@meta.data$DF.classifications_0.25_0.09_913
seu_kidney@meta.data$DF_hi.lo[which(seu_kidney@meta.data$DF_hi.lo == "Doublet" & seu_kidney@meta.data$DF.classifications_0.25_0.09_473 == "Singlet")] <- "Doublet_lo"
seu_kidney@meta.data$DF_hi.lo[which(seu_kidney@meta.data$DF_hi.lo == "Doublet")] <- "Doublet_hi"
TSNEPlot(seu_kidney, group.by="DF_hi.lo", plot.order=c("Doublet_hi","Doublet_lo","Singlet"), colors.use=c("black","gold","red"))
image.png

DoubletFinder采用以下参数:

seu〜这是一个经过充分处理的Seurat对象(即,在NormalizeData,FindVariableGenes,ScaleData,RunPCA和RunTSNE全部运行之后)。

PC〜具有统计意义的主成分数,以范围为单位指定(例如,PC = 1:10)

pN〜定义生成的人工双峰的数量,表示为合并的真实人工数据的一部分。基于DoubletFinder在很大程度上是pN不变,默认设置为25%

pK〜定义用于计算pANN的PC邻域大小,表示为合并的真实人工数据的一部分。没有设置默认值,应该根据每个scRNA-seq数据集调整pK。

nExp〜定义用于进行最终双峰/单峰预测的pANN阈值。可以从10X / Drop-Seq中的细胞密度估计该值,并根据同型双峰的估计比例进行​​调整。

参考:
https://github.com/ddiez/DoubletFinder
https://zhuanlan.zhihu.com/p/82656494

欢迎关注~


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容