【python】matplotlib.pyplot入门

matplotlib.pyplot介绍

matplotlib的pyplot子库提供了和matlab类似的绘图API,方便用户快速绘制2D图表。
matplotlib.pyplot是命令行式函数的集合,每一个函数都对图像作了修改,比如创建图形,在图像上创建画图区域,在画图区域上画线,在线上标注等。
下面简单介绍一下pyplot的基本使用:

(1)使用plot()函数画图

plot()为画线函数,下面的小例子给ploy()一个列表数据[1,2,3,4],matplotlib假设它是y轴的数值序列,然后会自动产生x轴的值,因为python是从0作为起始的,所以这里x轴的序列对应为[0,1,2,3]。

import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.ylabel('some numbers')  #为y轴加注释
plt.show()

plot()还可以接受x,y成对的参数,还有一个可选的参数是表示线的标记和颜色,plot函数默认画线是蓝色实线,即字符串'b-',你可以选择自己喜欢的标记和颜色。

import matplotlib.pyplot as plt
plt.plot([1,2,3,4], [1,4,9,16], 'ro')
plt.axis([0, 6, 0, 20])
plt.show()

axis()函数给出了形如[xmin,xmax,ymin,ymax]的列表,指定了坐标轴的范围。
这对于数值的处理来说非常有用,比如给出一个numpy数组(arrays),下面小例子给出了不同的线。

import numpy as np
import matplotlib.pyplot as plt

# evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)
# red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()

(2)线的属性

可以用不同方式对线的属性进行设置:

用参数的关键字

plt.plot(x, y, linewidth=2.0)
通过这种方式修改线宽

使用Line2D实例的set方法

plot函数返回一个线的列表,比如line1,line2 = plot(x1,y1,x2,y2)。
由于我们只有一条直线,对于长度为1的列表(list),我们可以用逗号,来得到列表第一个元素

line, = plt.plot(x,y,'-')
line.set_antialiased(False) #关闭抗锯齿像素

使用pyplot的setp()命令

还可以用setp()命令来进行设置,该命令可以对一个列表或者单个对象进行设置,并且提供了matlab式的使用方法

lines = plt.plot(x1, y1, x2, y2)
# use keyword args
plt.setp(lines, color='r', linewidth=2.0)
# or MATLAB style string value pairs
plt.setp(lines, 'color', 'r', 'linewidth', 2.0)

Line2D的属性

(3)多个图像

pyplot和MATLAB一样,都有当前图像和当前坐标的概念,所有命令都是对当前的坐标进行设置。
gca()返回当前的坐标实例(a matplotlib.axes.Axes instance),gcf()返回当前图像(matplotlib.figure.Figure instance)。
下面的小例子是产生两个子图像。

import numpy as np
import matplotlib.pyplot as plt

def f(t):
    return np.exp(-t) * np.cos(2*np.pi*t)

t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)

plt.figure(1)
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')

plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()

figure()命令时可选的,因为figure(1)是默认创建的。
subplot()命令会指定一个坐标系,默认是subplot(111),111参数分别说明行的数目numrows,列的数目numcols,第几个图像fignum(fignum的范围从1到numrows*numcols)。
subplot(211)指定显示两行,每行一图,接下来为第一幅图像。

可以用clf()来清空当前图像,用cla()来清空当前坐标。

(4)为图像做文本说明

text()命令可以用于在任意位置添加文本,而xlabel(),ylabel(),title()用来在指定位置添加文本。
所有的text()命令返回一个matplotlib.text.Text实例,也可以通过关键字或者setp()函数对文本的属性进行设置。

import numpy as np
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)


plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

转载请注明作者Jason Ding及其出处
Github主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(//www.greatytc.com/users/2bd9b48f6ea8/latest_articles)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 197,966评论 5 462
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,170评论 2 375
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 144,909评论 0 327
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,959评论 1 268
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,851评论 5 358
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,583评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,956评论 3 388
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,590评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,878评论 1 293
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,892评论 2 314
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,719评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,501评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,957评论 3 300
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,124评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,440评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,003评论 2 343
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,211评论 2 339

推荐阅读更多精彩内容