yolov3剪枝

剪枝原理

参考<<Learning Efficient Convolutional Networks through Network Slimming>>

剪枝原理

训练时的损失函数,将BN的系数\gamma作为正则项,使用L1,这种训练称之为稀疏训练:
损失函数

训练的结果,使得\gamma值趋向于0,从而可以去除相应的通道。
BN层尺度参数正常训练vs稀疏训练

代码运行

参考代码:https://github.com/tanluren/yolov3-channel-and-layer-pruning

1、darknet模型转换成代码使用的格式

python3 -c "from models import *; convert('cfg/yolov3.cfg', 'weights/last.pt')"

2、正常训练(可做为baseline,与稀疏训练进行对比)

python3 train.py --cfg cfg/my_cfg.cfg --data data/my_data.data --weights weights/yolov3.weights --epochs 100 --batch-size 32

3、稀疏训练

python3 train.py --cfg cfg/my_cfg.cfg --data data/my_data.data --weights weights/last.weights --epochs 300 --batch-size 32 -sr --s 0.001 --prune 1

4、通道剪枝(考虑需不需对shortcut层进行剪枝;层剪枝,在通道剪枝上衍生而来,需要计算各层平均\gamma值)

python3 prune.py --cfg cfg/my_cfg.cfg --data data/my_data.data --weights weights/last.pt --percent 0.85

5、微调

python3 train.py --cfg cfg/prune_0.85_my_cfg.cfg --data data/my_data.data --weights weights/prune_0.85_last.weights --epochs 100 --batch-size 32

6、查看指标

python3 test.py --data data/voc_yolov3.data --cfg cfg/yolov3.cfg --weights converted.pt

Class Images Targets P R mAP F1
all 5.93e+03 1.39e+04 0.959 0.949 0.943 0.953

7、图片,文件夹,视频,相机等测试

python3 detect.py --data data/voc_yolov3.data --cfg cfg/yolov3.cfg --weights converted.pt
--source {
   0 # webcam
  file.jpg # image
  file.mp4 # video
  path/ # directory
  path/*.jpg # glob
  rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
  rtmp://192.168.1.105/live/test # rtmp stream
  http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
  }
--output output/ --conf 0.5

8、tensorboard
使用tensorboard可视化

tensorboard --logdir=runs/ --port=40110

在xshell里面设置


xshell设置

然后可以在本地输入网址 127.0.0.1:40110 访问

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容